• 제목/요약/키워드: octree color quantization

검색결과 8건 처리시간 0.02초

Improved k-means Color Quantization based on Octree

  • Park, Hyun Jun;Kim, Kwang Baek
    • 한국컴퓨터정보학회논문지
    • /
    • 제20권12호
    • /
    • pp.9-14
    • /
    • 2015
  • In this paper, we present an color quantization method by complementing the disadvantage of K-means color quantization that is one of the well-known color quantization. We named the proposed method "octree-means" color quantization. K-means color quantization does not use all of the clusters because it initializes the centroid of clusters with random value. The proposed method complements this disadvantage by using the octree color quantization which is fast and uses the distribution of colors in image. We compare the proposed method to six well-known color quantization methods on ten test images to evaluate the performance. The experimental results show 68.29 percent of mean square error(MSE) and processing time increased by 14.34 percent compared with K-means color quantization. Therefore, the proposed method improved the K-means color quantization and perform an effective color quantization.

정확한 깊이 맵을 위한 전처리 과정과 다이나믹 프로그래밍에 관한 연구 (A Study of the Use of Step by Preprocessing and Dynamic Programming for the Exact Depth Map)

  • 김영섭;송응열
    • 반도체디스플레이기술학회지
    • /
    • 제9권3호
    • /
    • pp.65-69
    • /
    • 2010
  • The stereoscopic vision system is the algorithm to obtain the depth of target object of stereo vision image. This paper presents an efficient disparity matching method using nagao filter, octree color quantization and dynamic programming algorithm. we describe methods for performing color quantization on full color RGB images, using an octree data structure. This method has the advantage of saving a lot of data. We propose a preprocessing stereo matching method based on Nagao-filter algorithm using color information. using the nagao filter, we could obtain effective depth map and using the octree color quantization, we could reduce the time of computation.

Color Similarity Definition Based on Quantized Color Histogram for Clothing Identification

  • Choi, Yoo-Joo;Moon, Nam-Mee
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2009년도 IWAIT
    • /
    • pp.396-399
    • /
    • 2009
  • In this paper, we present a method to define a color similarity between color images using Octree-based quantization and similar color integration. The proposed method defines major colors from each image using Octree-based quantization. Two color palettes to consist of major colors are compared based on Euclidean distance and similar color bins between palettes are matched. Multiple matched color bins are integrated and major colors are adjusted. Color histogram based on the color palette is constructed for each image and the difference between two histograms is computed by the weighted Euclidean distance between the matched color bins in consideration of the frequency of each bin. As an experiment to validate the usefulness, we discriminated the same clothing from CCD camera images based on the proposed color similarity analysis. We retrieved the same clothing images with the success rate of 88 % using only color analysis without texture analysis.

  • PDF

살색 검출 mask를 이용한 사진영상의 컬러 양자화에 대한 연구 (A study on the color quantization for facial images using skin-color mask)

  • 이민철;이종덕;허명선;문찬우;안현식;정구민
    • 한국인터넷방송통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.25-30
    • /
    • 2008
  • 본 논문에서는 인물 이미지를 GIF로 변환 할 시에 색상의 손실을 최대한 줄이기 위한 알고리듬을 제안한다. 손실을 줄이는 방법으로는 Octree Quantization과 살색 검출 mask를 이용한다. 인물이미지의 경우, 살색정보가 이미지의 중요한 부분을 차지하고 있으므로, 살색 영역을 검출 할 수 있는 mask를 생성하여 살색영역과 그 밖의 영역을 분리하고, 분리된 영역별로 Color Quantization을 한다. 제안된 알고리듬을 통하여 24비트 이미지를 GIF로 변환한 결과, 일반적으로 많이 사용하는 이미지 포맷변환 툴을 사용하여 변환한 영상보다 살색 정보의 손실이 최소화됨으로써, 인물이미지의 GIF 변환에 있어 좋은 성능을 보여 준다는 것을 확인할 수 있다.

  • PDF

내용기반 검색을 위한 자연 영상의 칼라양자화 방법 (Color Quantization of Natural Images for Content-Based Retrieval)

  • 길연희;김성영;박창민;김민환
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2000년도 추계학술발표논문집
    • /
    • pp.266-270
    • /
    • 2000
  • 내용기반 영상검색시스템에서 객체 단위로 영상을 검색하기 위해서는 영상에서 의미있는 객체를 추출하는 과정이 필수적이며, 이를 위해 영역 분할을 효율적으로 수행하기 위한 양자화가 선행되어야 한다. 일반적인 칼라 양자화 기법은 칼라 수를 줄이되 양자화 된 영상이 원시 영상과 가능할 비슷해 보이도록 하는 것을 목적으로 하지만, 영역 분할을 위한 칼라 양자화에서는 칼라의 표현보나는 의미있는 객체를 용이하게 추출할 수 있도록 양자화 하는 것을 목적으로 한다. 본 논문에서는 기존의 Octree 양자화 방법과 K-means 알고리즘의 장점을 조합하여 영역 분할에 용이한 양자화 결과를 얻을 수 있는 방법을 제안한다. 먼저, Octree 양자화 방법을 수행하여 얻어진 양자화 된 칼라들 중에서 시각적으로 유사한 칼라를 병합함으로써, Octree 양자화 방법의 단점인 강제 분할 문제점을 해결한다. 이어서, 병합 후의 양자화 된 칼라에 대해서만 K-means 알고리즘을 수행함으로써, 보다 빠른 시간 내에 영역 분할에 적합한 양자화 된 영상을 얻는다. 실험을 통해 제안한 방법의 효용성을 확인하였다.

  • PDF

Retrieval of Identical Clothing Images Based on Non-Static Color Histogram Analysis

  • ;;김구진
    • 방송공학회논문지
    • /
    • 제14권4호
    • /
    • pp.397-408
    • /
    • 2009
  • In this paper, we present a non-static color histogram method to retrieve clothing images that are similar to a query clothing. Given clothing area, our method automatically extracts major colors by using the octree-based quantization approach[16]. Then, a color palette that is composed of the major colors is generated. The feature of each clothing, which can be either a query or a database clothing image, is represented as a color histogram based on its color palette. We define the match color bins between two possibly different color palettes, and unify the color palettes by merging or deleting some color bins if necessary. The similarity between two histograms is measured by using the weighted Euclidean distance between the match color bins, where the weight is derived from the frequency of each bin. We compare our method with previous histogram matching methods through experiments. Compared to HSV cumulative histogram-based approach, our method improves the retrieval precision by 13.7 % with less number of color bins.

칼라 영상 객체 분할을 이용한 게임 콘텐츠 분류 서비스 방안에 관한 연구 (A Study on Game Contents Classification Service Method using Image Region Segmentation)

  • 박창민
    • 서비스연구
    • /
    • 제5권2호
    • /
    • pp.103-110
    • /
    • 2015
  • 최근, 3D FPS 게임에서 캐릭터의 분류는 매우 중요한 문제로 떠오르고 있다. 본 연구에서는 간단한 조작으로 의미객체의 화상 영역 분할을 이용한 게임 콘텐츠 분류 방법을 제안한다. 이 방법에서는, 우선 비선형 RGB 컬러 모델과 컬러양자화 방식을 사용했다. 입력 화상은 20개 미만 양자화 된 색을 표현하고 의미 있는 적은 수의 컬러 히스토그램을 사용한다. 그리고, 적은 블록으로 분할 된 이미지는 블록 단위 컬러 히스토그램 교차로 인접 블록과의 유사도를 계산한다. 왜냐하면, 질감 및 대상 블록의 경계에 있어서, 추출 블록 경계를 제외한 나머지를 사용하기 때문이다. 게임 오브젝트는 이들 방법에 에 의해 블록 경계 영역을 설정하고 FPS 게임 플레이에 사용될 수 있다. 실험을 통해, 우리는 각각의 기능을 사용하여 분류 방법에 대해 80% 이상의 정확도를 얻을 수 있었다. 따라서, 이 특성을 이용하여 게임콘텐츠를 효율적으로 분류 할 수 있고, 이는 게임 속도와 전략적 행동에 보다 나은 결과를 초래할 것으로 예상한다.

의상 특징 기반의 동일인 식별 (Person Identification based on Clothing Feature)

  • 최유주;박선미;조위덕;김구진
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제16권1호
    • /
    • pp.1-7
    • /
    • 2010
  • 비전 기반의 감시 시스템에서 동일인의 식별은 매우 중요하다. 감시 시스템에서 주로 사용되는 CCTV 카메라의 영상은 상대적으로 낮은 해상도를 가지므로 얼굴 인식 기법을 이용하여 동일인을 식별하기는 어렵다. 본 논문에서는 CCTV 카메라 영상에서 의상 특징을 이용하여 동일인을 식별하는 알고리즘을 제안한다. 건물의 주출입구에서 출입자가 인증을 받을 때, 의상 특징이 데이터베이스에 저장된다. 그 후, 건물 내에서 촬영한 영상에 대해 배경 차감 및 피부색 발견 기법을 이용하여 의상 영역을 발견한다. 의상의 특징 벡터는 텍스처와 색상 특징을 이용하여 구성한다. 텍스처 특징은 지역적 에지 히스토그램을 이용하여 추출된다. 색상 특징은 색상 지도의 옥트리 기반 양자화(octree-based quantization)를 이용하여 추출된다. 건물 내의 촬영 영상이 주어질 때, 데이터베이스에서 의상 특징이 가장 유사한 사람을 발견함으로써 동일인을 식별하며, 의상 특징 벡터 간의 유사도 측정을 위해서는 유클리디안 거리(Euclidean distance)를 사용한다. 실험 결과, 얼굴인식 기법이 최대 43%의 성공률을 보인 데 비해, 의상 특징을 이용하여 80%의 성공률로 동일인을 식별하였다.