• Title/Summary/Keyword: ocean surface current

Search Result 494, Processing Time 0.029 seconds

Measurement of Low-Frequency Ocean Noise by a Self-Recording Hydrophone (자동기록식 수중청음기를 이용한 저주파 해양잡음의 측정)

  • Kim, Bong-Chae;Kim, Byoung-Nam;Cho, Hong-Sang
    • Ocean and Polar Research
    • /
    • v.29 no.4
    • /
    • pp.311-316
    • /
    • 2007
  • Ocean noise may be used for monitoring wind speed and rainfall rate on the sea surface, as well as for tracking whales' migration routes. In particular, low-frequency ocean noise has recently been of concern with relation to the behavior of marine mammals. Low-frequency ocean noise has been increasing over the past few decades due to increase of ship traffic and offshore oil industry activities. Mechanical noise such as flow noise and cable strumming noise may be induced if low-frequency ocean noise is measured by cabled traditional hydrophone in high current areas. To successfully measure low-frequency ocean noise in a shallow water environment with strong current, we developed a self-recording hydrophone. This paper describes the main configurations of the self-recording hydrophone and presents some results on measured data.

Estimation of Effective Range of HFR Data and Analysis of M2 Tidal Current Characteristics in the Jeju Strait (제주해협 HFR 자료의 유효 범위 산정과 M2 조류 특성 분석)

  • Oh, Kyung-Hee;Lee, Seok;Park, Joonseong;Song, Kyu-Min;Jung, Dawoon
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • The effective range of surface current data observed by high-frequency radar (HFR) operated in the northern coastal area of Jeju Island by Korea Institute of Ocean Science and Technology was estimated and the distribution and variability of the M2 tidal current of the Jeju Strait was analyzed. To evaluate the HFR data, the M2 tidal current corrected from 25 hours current data observed by the Korea Hydrographic and Oceanographic Agency (KHOA) was compared with the M2 tidal current in the Jeju Strait analyzed from the surface currents of HFR. The reliability of HFR data was confirmed by analyzing the characteristics of the tide components of these two data sets, and the effective range of HFR data was estimated through temporal and spatial analysis. The observation periods of HFR used in the analysis were from 2012 to 2014, and it was confirmed that there is a difference in the effective range of HFR data according to the observation time. During the analysis periods, the difference between the M2 current ellipses from the data of KHOA and the HFR was greater in the eastern than in the western part of the Jeju Strait, and represented a high reliability in the western and central parts of the Jeju Strait. The tidal current of the Jeju Strait analyzed using the HFR data revealed a seasonal variability a relatively weak in summer and a strong in winter, about a 17% fluctuations between the summer and winter based on the length of the semi-major axis of tidal ellipse. Appraisals and results of regarding the characteristics and seasonal variability of the M2 tidal current in the Jeju Strait using HFR data have not been previously reported, so the results of this study are considered meaningful.

Surface Current Fields in the Eastern East China Sea

  • Lie, Heung-Jae;Cho, Cheol-Ho
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Surface current fields in the eastern East China Sea (ECS) were constructed by analyzing trajectories of 58 satellite-tracked surface drifters released during 1991-1996. Composite trajectories and 20-minute-by-20-minute box-averaged current vectors show that the basic current pattern composes of: the Kuroshio main stream, which turns eastward toward the Tokara Strait; a northward branch current of the Kuroshio on the ECS outer shelf deeper than 100 m; and an anticyclonic circulation in the northern Okinawa Trough west of Kyushu. The northward branch current sharply changes its direction to the northeast when it crosses a line connecting Cheju Island, Korea and Goto Islands, Japan. The basic pattern of current field changes slightly from winter to summer, and the main axis of the Tsushima Current in the Korea Strait is found to shift seasonally. The drifter experiment does not support the claim that the Yellow Sea Warm Current is separated from the northward branch current on the outer shelf southeast of Cheju Island. We suggest that the use of the term 'Tsushima Current' be limited to the northeast channel flow in the Korea Strait. The new term 'Kuroshio Branch Current' is suggested for the northward branch current on the outer shelf south of Cheju-do, which is separated from the Kuroshio.

  • PDF

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

ESTIMATING THE GEOSTROPHIC VELOCITY COMPONENT IN THE SEA SURFACE VELOCITY OBSERVED BY THE HF RADAR IN THE UPSTREAM OF THE KUROSHIO

  • Tokeshi, Ryoko;Ichikawa, Kaoru;Fujii, Satoshi;Sato, Kenji;Kojima, Shoichiro
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.672-675
    • /
    • 2006
  • The geostrophic current component is estimated from the sea surface velocity observed by the long-range High-Frequency Ocean Radar (HF radar) system in the upstream of the Kuroshio, by comparing with geostrophic velocity determined from along-track T/P and Jason-1 altimetry data. However, the sea surface velocity of the HF radar (HF velocity) contains not only the geostrophic current but also the ageostrophic current such as tidal current and wind-driven Ekman current. Tidal current component is first extracted by the harmonic analysis of the time series of the HF velocity. Then, the Ekman current is further estimated from daily wind data of IFREMER by applying the least-square method to the residual difference between the HF velocity and the altimetry geostrophic velocity. As a result, the Ekman current in the HF velocity is estimated as 1.32 % of the wind speed and as rotated 45$^{\circ}$ clockwise to the wind direction. These parameters are found almost common in the Kuroshio area and in the Open Ocean. After these corrections, the geostrophic velocity component in the HF velocity agrees well with the altimetry geostrophic velocity.

  • PDF

Application of the Improved Green Integral Equation to the Radiation-Diffraction Problem for a Floating Ocean Structure in Waves and Current

  • Hong, Do-Chun
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.3 no.1
    • /
    • pp.14-22
    • /
    • 2000
  • The improved Green integral equation for the calculation of time-harmonic potentials in the radiation diffraction problem about a freely floating body in the presence of moderate or weak current is presented. The forward-speed Green function presented by Brard is used. The correct free surface boundary conditions on the physical free surface are employed as well as an appropriate boundary conditions on the non-physical inner free surface. The default in the existing Green integral equation as well as in the source integral equation is discussed in detail.

  • PDF

Estimation of Geostrophic Current Calculated from Sea Surface Topography in East Sea (동해의 해면지형 계산에 의한 지형류의 흐름 추정)

  • Yun Hong-Sic;Lee Dong-Ha
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.159-165
    • /
    • 2006
  • This paper deals with the estimation of geostrophic current using the sea surface topography calculated from the geoidal height from EGM96 geopotential model and the mean sea surface height from CLS_SHOM mean sea surface model. The CLS_SHOM model was developed using the altimetry data set. The estimation of geostrophic current is available in the characteristic research of ocean in many country, while for East Sea a few studies were done. The goal of this study is basically to provide the characteristics of geostrophic current in East Sea. The results show that the mean sea surface topography (SST) in East Sea is about 0.37 m and the mean geostrophic velocity is -0.028 m/sec. The Pacific water enters into the East Sea through the Korea Strait and after passing the strait, this inflow splits into two branches: one flows northward along the Korean coast and another outflows into Pacific ocean through Tsugaru and Soya strait passing the east-northeastward along the Japanese outer shelf, and outflows into Okhotsk ocean.

A Study on the Discharge System of Thermal Waste Water (온배수 방류시스템에 관한 기초적 연구)

  • Kwak, Ki-Su;Jeon, Yong-Ho;Kim, Heon-Tae;Ryu, Cheong-Ro;Lee, Kyung-Seon
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.6
    • /
    • pp.87-94
    • /
    • 2007
  • This study used POM (Princeton ocean model) improved for applying to coastal area in order to predict the distribution of thermal waste water. This model was applied to the coastal circulation and the effect of thermal waste water of Cheonsu-Bay. So this study compared the discharge of thermal waste water with each layer and section. The tidal current was about 1.5 m/sec at surface level and 0.9 m/sec on bottom level at flood tide; tidal current was about 1.3 m/sec on surface level and 0.8 m/sec on bottom level at ebb tide. The method discharging the thermal waste water in the nearshore region (case 1) accelerates the diffusion of the thermal waste water in the north-south direction(longshore direction). However, the method discharge the thermal waster water in the offshore region (case 2) reduced the diffusion of the thermal waste water over the coastal region. According th the diffusion region of the thermal waste water with case 1 and case 2 at three different layers (surface, middle, bottom), the diffusion region by case 1 discharge method generally influenced wider region (twice) than the one by case 2 discharge method with lower temperature between $1^{\circ}C\;and\;2^{\circ}C$, whereas the case 2 discharge method influenced the deeper region (middle and botton layers) with higher change of the water temperature ($1{\sim}3^{\circ}C$).

Report on the Present Condition and Operating of High Frequency Ocean Surface Radars in Korea (해수면 관측레이더의 국내 현황 및 운용에 관한 보고)

  • Song, Kyu-Min;Cho, Chol-Ho;Jung, Kyung-Tae;Lie, Heung-Jae
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.437-445
    • /
    • 2010
  • There is increasing interest, on the global basis, in the operation of ocean surface radars for measurement of coastal sea surface conditions to support environmental, oceanographic, meteorological, climatological, maritime and disaster mitigation operations. In south Korea, ocean surface radars are operating to monitoring oil spill, outflow from dike or preventing from safety-accidents in the 6 regions (16 radial sites) by main frequency about 13, 25 and 42 MHz until the present. However, that ocean surface radars have been operated on an experimental spectrum basis. In the results of 3~50 MHz band domestic analysis to improve the regulatory status of the spectrum used by oceanographic radars, it was demonstrated that sufficient frequency bands are available for oceanographic radars on the frequency band above 20 MHz. It is difficult to deploy and operate oceanographic radars in the sub-bands below 20 MHz except for 13 MHz band. For using HF ocean surface radars one should understand the spectrum environment in Korea and should prepare a suitable operating system and data processing techniques.

Variation of Underwater Ambient Noise Observed at IORS Station as a Pilot Study

  • Kim, Bong-Chae;Choi, Bok-Kyoung
    • Ocean Science Journal
    • /
    • v.41 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • The Ieodo Ocean Research Station(IORS) is an integrated meteorological and oceanographic observation base which was constructed on the Ieodo underwater rock located at a distance of about 150 km to the south-west of the Mara-do, the southernmost island in Korea. The underwater ambient noise level observed at the IORS was similar to the results of the shallow water surrounding the Korean Peninsula (Choi et al. 2003) and was higher than that of deep ocean (Wenz 1962). The wind dependence of ambient noise was dominant at frequencies of a few kHz. The surface current dependence of ambient noise showed good correlation with the ambient noise in the frequency of 10 kHz. Especially, the shrimp sound was estimated through investigations of waveform and spectrum and its main acoustic energy was about 40 dB larger than ambient noise level at 5 kHz.