• Title/Summary/Keyword: ocean analysis data

Search Result 1,922, Processing Time 0.027 seconds

Extreme Value Analysis of Metocean Data for Barents Sea

  • Park, Sung Boo;Shin, Seong Yun;Shin, Da Gyun;Jung, Kwang Hyo;Choi, Yong Ho;Lee, Jaeyong;Lee, Seung Jae
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.26-36
    • /
    • 2020
  • An extreme value analysis of metocean data which include wave, wind, and current data is a prerequisite for the operation and survival of offshore structures. The purpose of this study was to provide information about the return wave, wind, and current values for the Barents Sea using extreme value analysis. Hindcast datasets of the Global Reanalysis of Ocean Waves 2012 (GROW2012) for a waves, winds and currents were obtained from the Oceanweather Inc. The Gumbel distribution, 2 and 3 parameters Weibull distributions and log-normal distribution were used for the extreme value analysis. The least square method was used to estimate the parameters for the extreme value distribution. The return values, including the significant wave height, spectral peak wave period, wind speed and current speed at surface, were calculated and it will be utilized to design offshore structures to be operated in the Barents Sea.

Discussions on Availability of Weather Information Data and Painting Effect of Existing 8,600 TEU Container Ship Using Ship Performance Analysis Program

  • Shin, Myung-Soo;Ki, Min Suk;Lee, Gyeong Joong;Park, Beom Jin;Lee, Yeong Yeon;Kim, Yeongseon;Lee, Sang Bong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.377-386
    • /
    • 2020
  • This paper discusses the effectiveness of onboard measurements and data extracted from weather information for speed-power analysis. Furthermore, validation results of hull and propeller cleaning and painting during dry-docking are discussed. Wind and wave information can be obtained from onboard measurements or weather information from the National Oceanic and Atmospheric Administration (NOAA). The weather information of a specified position and time is extracted from NOAA weather data and compared with onboard measurements. In addition, to validate the effects of hull cleaning and painting during dry-docking, speed-power analysis results of before and after dry-docking are compared. The results show that both onboard measurements and weather information show acceptable reliability when added resistance and speed-power analysis results are compared with each other. Moreover, the ship performance analysis (SPA) software clearly shows the effects of hull cleaning and painting, and it can provide reliable analysis results with either onboard measurements or weather information. In conclusion, it is confirmed that the analysis method and SPA software used in this study are effective in analyzing the ship's speed-power performance.

A Review of the Quality Control of Global Ocean Temperature and Salinity Data (전지구 수온 및 염분 자료 품질 관리에 관한 논의)

  • Chang, You-Soon
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.554-566
    • /
    • 2012
  • High-density temperature and salinity profiles from the successful international Argo project made it possible to reproduce the three-dimensional global ocean state in near-real time, which also increased much attention on the data analysis studies of global ocean. This paper reviewed several important issues on the recent data analysis studies such as systematic biases of XBT (eXpendable BathyThermograph) and Argo data, sea level budget discrepancy between steric height and satellite observed data, heat content change, and the current status of the development of objective analysis fields. This study also emphasized that it is required to carry out very cautious ocean data quality control and understand global-scale ocean variability prior to analyzing the regional-scale ocean climate change, particularly, in the East Asian marginal Seas.

Text Mining Analysis on the Research Field of the Coastal and Ocean Engineering Based on the SCOPUS Bibliographic Information (해안해양공학 연구 분야의 SCOPUS 서지정보 Text Mining 분석)

  • Lee, Gi Seop;Cho, Hong Yeon;Han, Jae Rim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.1
    • /
    • pp.19-28
    • /
    • 2018
  • Numerous research papers have been accumulated due to the development and computerization of bibliometrics. This made it difficult to review all of the related papers published worldwide to conduct the study. However, due to the development of Natural language processing techniques, the tendency analysis of published research papers has become easier. In this study, text mining analysis using the statistical computing language R was carried out based on the bibliographic information of SCOPUS DB (Data Base) in the field of coastal and ocean engineering. As expected, the term 'wave' predominates, and it was confirmed that numerical analysis and hydraulic experiments were still dominant from the terms 'numerical model', 'numerical simulation', and 'experimental study'. In addition, recent use of the term 'wave energy' related to marine energy has been recognized. On the other hand, it was quantitatively confirmed that the frequency of connection between 'wave', and 'height' or 'energy' prevailed, and suggested the possibility of high resolution analysis by detailed field and period in the future.

A Structural Analysis of Aluminum Heli-Deck

  • Lee, Jae-Hwan;Chung, Tae-Hwan
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.5 no.1
    • /
    • pp.53-57
    • /
    • 2002
  • Most of the heli-decks are constructed with aluminum extrusions. The heli-deck product company supplies structural analysis data to the shipbuilding companies: so, if the shipbuilding co. needs to make up for the weak points in the current system, they only need to analyze the substructure through the FEA. In this paper, we will concentrate on the following issues: analysis of aluminium extrusions regarding the structural analysis data, and check safety about the substructure through the FEA.

  • PDF

A Dynamic Analysis of 150 ton Winch using Ocean Environment Data (해양 환경 데이터를 이용한 150톤 윈치의 동특성 해석)

  • Lee, Chang-Ho;Min, Cheon-Hong;Kim, Hyung-Woo;Jang, Jin-Woo;Hwang, Dong-Hwan;Rhyu, Yong-Suk
    • Ocean and Polar Research
    • /
    • v.39 no.3
    • /
    • pp.205-211
    • /
    • 2017
  • This paper seeks to provide a dynamic analysis of a 150 ton winch based on ocean environmental data. The winch model that was subjected to analysis was modeled from CAD to each subsystem by the commercial software DAFUL. The winch model has tree brake systems (disk brake, band brake and ratchet brake). The rotation motion of the motor and contact elements of the brake are applied to the winch model in order to analyze its dynamic characteristics. In addition, a crane-barge was modeled to apply ocean environmental data. The motion data of the crane-barge was produced by means of the RAO(Response Amplitude Operator) of the barge and wave spectrum. The reaction force of the translational joint was measured instead of the tension of the cable. The brake performance of the winch was produced and assessed based on the operating motion of the crane-barge.

An Economic Feasibility Study for Construction and Use of Korea Ocean Research Stations (종합해양과학기지 구축 및 활용의 경제성 분석)

  • Song, Sang-Hwa;Shin, Kwang-Sup;Kim, Jae-Gon;Jeong, Jin-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.1
    • /
    • pp.52-64
    • /
    • 2015
  • Korea ocean research stations manage the weather and environmental data collected from coastal and ocean areas to provide short-term and long-term ocean forecasts. The purpose of this paper is to analyze and quantify economic benefits of the ocean research stations with sensors to observe physical, chemical, and biological data. The construction and operation of an integrated ocean observation station is expected to reduce uncertainty about ocean and coastal areas and to improve the quality of ocean forecasts. The economic benefits are mainly come from improved search and rescue operations, ocean pollution management, yellow dust management, and improved productivity in ocean-related industries. In addition, an input-output analysis is performed to evaluate the economic impacts of ocean research stations nationwide. The analysis shows that the system can contribute to industries such as fishing, maritime and air cargo, medical and health care.

Review on Applications of Machine Learning in Coastal and Ocean Engineering

  • Kim, Taeyoon;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.194-210
    • /
    • 2022
  • Recently, an analysis method using machine learning for solving problems in coastal and ocean engineering has been highlighted. Machine learning models are effective modeling tools for predicting specific parameters by learning complex relationships based on a specified dataset. In coastal and ocean engineering, various studies have been conducted to predict dependent variables such as wave parameters, tides, storm surges, design parameters, and shoreline fluctuations. Herein, we introduce and describe the application trend of machine learning models in coastal and ocean engineering. Based on the results of various studies, machine learning models are an effective alternative to approaches involving data requirements, time-consuming fluid dynamics, and numerical models. In addition, machine learning can be successfully applied for solving various problems in coastal and ocean engineering. However, to achieve accurate predictions, model development should be conducted in addition to data preprocessing and cost calculation. Furthermore, applicability to various systems and quantifiable evaluations of uncertainty should be considered.

Estimation of Effective Range of HFR Data and Analysis of M2 Tidal Current Characteristics in the Jeju Strait (제주해협 HFR 자료의 유효 범위 산정과 M2 조류 특성 분석)

  • Oh, Kyung-Hee;Lee, Seok;Park, Joonseong;Song, Kyu-Min;Jung, Dawoon
    • Ocean and Polar Research
    • /
    • v.42 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • The effective range of surface current data observed by high-frequency radar (HFR) operated in the northern coastal area of Jeju Island by Korea Institute of Ocean Science and Technology was estimated and the distribution and variability of the M2 tidal current of the Jeju Strait was analyzed. To evaluate the HFR data, the M2 tidal current corrected from 25 hours current data observed by the Korea Hydrographic and Oceanographic Agency (KHOA) was compared with the M2 tidal current in the Jeju Strait analyzed from the surface currents of HFR. The reliability of HFR data was confirmed by analyzing the characteristics of the tide components of these two data sets, and the effective range of HFR data was estimated through temporal and spatial analysis. The observation periods of HFR used in the analysis were from 2012 to 2014, and it was confirmed that there is a difference in the effective range of HFR data according to the observation time. During the analysis periods, the difference between the M2 current ellipses from the data of KHOA and the HFR was greater in the eastern than in the western part of the Jeju Strait, and represented a high reliability in the western and central parts of the Jeju Strait. The tidal current of the Jeju Strait analyzed using the HFR data revealed a seasonal variability a relatively weak in summer and a strong in winter, about a 17% fluctuations between the summer and winter based on the length of the semi-major axis of tidal ellipse. Appraisals and results of regarding the characteristics and seasonal variability of the M2 tidal current in the Jeju Strait using HFR data have not been previously reported, so the results of this study are considered meaningful.

Axial Vibration Analysis of Umbilical Cable with Pilot Mining Robot using Sea Test Data (실해역 시험 데이터를 이용한 파일럿 채광로봇 엄빌리컬 케이블의 축진동 해석)

  • Min, Cheon-Hong;Yeu, Tae-Kyeong;Hong, Sup;Kim, Hyung-Woo;Choi, Jong-Su;Yoon, Suk-Min;Kim, Jin-Ho
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.2
    • /
    • pp.128-134
    • /
    • 2015
  • Axial vibration analysis is very important for a deep-seabed mining system. In this study, an axial vibration analysis was carried out to estimate the natural frequencies and tensions of the umbilical cable using experimental data obtained from the first pre-pilot mining test. The axial vibrations of the umbilical cable with a pilot mining robot at the bottom end were analytically determined. The range of the added mass coefficients of the pilot mining robot is estimated by comparing the experimental and analytical data. The natural frequencies and maximum tensions are calculated using four estimated added mass coefficients.