
1. Introduction

Humans have attempted to understand various phenomena that occur 
in the sea many years ago. However, these phenomena are difficult to 
elucidate even after several centuries because of complex interactions 
involving physical, chemical, and biological processes (Dawarakish et 
al., 2013). Hence, various methods have been formulated through 
statistical analysis, spectrum analysis, time series analysis, empirical 
formulas based on mathematical model experiments, and other 
mathematical and physical analyses. However, the derivation of 
accurate results is limited owing to the complex interrelationships 
among numerous parameters in nature (Goldstein et al., 2019).

As we enter the era of the Fourth Industrial Revolution, machine 
learning (ML) models that identify and predict statistical structures 
from input and output data using computers to solve numerous 
engineering problems in the natural world are garnering significant 
attention. ML, a field of artificial intelligence (AI), is an inductive 
method that identifies rules through learning using data and results, 
instead of using a conventional program method that derives results 
from rules and data. ML techniques can easily solve complex 
engineering problems and enable the regression analysis of nonlinear 

relationships. ML demonstrates clear advantages over other 
conventional regression methods because it adopts a specific algorithm 
that can learn from the input data and provides accurate results via the 
output (Salehi and Burgueño, 2018). ML-based predictive models 
include various algorithms such as neural networks, decision trees, 
support vector machines (SVM), and gradient boosting (GBR). In 
coastal engineering, studies based on ML-based algorithms are 
increasingly conducted to predict wave formation, wave breaking, tidal 
changes, hydraulic properties around structures, and changes in beach 
profiles (Deo and Jagdale, 2003; Panizzo and Briganti, 2007; Kankal 
and Yuksek, 2012). 

This paper introduces ML models and reviews various studies that 
predict significant parameters in coastal engineering such as waves, 
wave breaking, hydraulic properties around structures, and beach 
profile changes. This paper focuses on regression analysis studies that 
involve continuous variables for parameters during the supervised 
learning of ML models, whereas studies pertaining to classification 
involving categorical variables are omitted. Furthermore, the basic 
concepts and basic contents of various ML models are introduced, and 
the technological trends and application examples of ML models in the 
coastal engineering field are described.
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2. Machine Learning Model

As we enter the era of the Fourth Industrial Revolution, interest in AI 
and ML is increasing. ML, which is a field of AI, trains computers 
human thinking and cognition methods such that the computers can 
perform recognition and inference on their own without preset 
judgment criteria for all variables. General ML algorithms include 
supervised learning, unsupervised learning, and reinforcement 
learning (Fig. 1). Two supervised learning models exist: regression and 
classification. Data classification and prediction are determined based 
on the characteristics of both the input and dependent variables. 
Representative supervised learning algorithms include artificial neural 
network (ANN), SVM, and random forest (RF). Unsupervised learning 
is a method of predicting results for new data by clustering patterns or 
features from unlabeled data. It is primarily used for clustering and 
dimensionality reduction, e.g., k-means clustering and principal 
component analysis. This paper focuses on the application cases of 
coastal and marine engineering for supervised learning among ML 
algorithms.

2.1 Linear Regression (LR) Model
The LR model uses linear parameters and offers easy and quick 

analyses. The LR model was developed more than a century ago and has 
been widely used over the past few decades. However, it yields low 
accuracy results for data that exhibit nonlinear relationships. LR 
generates a regression model using one or more features and obtains 
parameters  and  that minimize the mean squared error (MSE) 
between the experimental value () and predicted value () (Eqs. (1)‒(2)).

 ×  ×× (1)

  



  






 (2)

2.1.1 Lasso regression
In some cases, the conventional LR method results in overfitting, 

i.e., the predictive performance is unsatisfactory when new data are 
provided. Hence, lasso regression was developed, which limits models 
by force using the L1 regulation, as follows (Eq. (3)):

    


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  









  



 (3)

where  is the number of weights, and  is the  parameter. This 
equation obtains w and b that minimize the sum of the  and 
.

2.1.2 Ridge regression
Ridge regression is a model in which the L2 regulation term is added 

to solve the overfitting problem of the LR model. This model not only 
fits the data of the learning algorithm, but also ensures that the weights 
of the model are minimized (Eq. (4)).
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  











  




 (4)

The difference between lasso regression and ridge regression is that 
the weights are zero in lasso, whereas in ridge, the weights are 
approximately zero but not exactly zero. Hence, the lasso regression 
offers high accuracy only if some of the input variables are important, 
whereas the accuracy of the ridge model will be high if the importance 
of the input variables is similar in general.

2.2 ANN
An ANN is an information processing structure in the form of a 

network modeled based on the human nervous system, where simple 
functional processors are interconnected on a large scale. The 

Fig. 1 Machine learning algorithms (Liu et al., 2021)
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perceptron, which is the basis of deep learning, is a structure designed 
to deliver information based on a threshold by issuing a weighting 
signal for input values through the imitation of neuron behaviors in 
brain cells. Fig. 2 shows the structure of a neural network. A neural 
network comprises an input layer, a hidden layer, and an output layer, 
and its nodes are interconnected by weights. In an ANN, the values are 
transmitted from the input layer to all nodes of the hidden layer in a 
feedforward method. Moreover, the output values of all nodes of the 
hidden layer are transmitted to all nodes via the coupling and activation 
functions. Learning proceeds by redistributing weights between 
neurons through the backpropagation algorithm such that they 
converge in a direction in which the errors are reduced to minimize the 
difference between the predicted and experimental values.

In the data processing process of the neural network, each node 
multiplies the input value by a weight and then passes the output value 
through the activation function to the next node to output the result, as 
expressed in Eq. (5). 

  
  



  (5)

where  is the weight,  the bias, and  the input value.
The activation function renders the neural network nonlinear and 

enables a nonlinear analysis of the result calculated from the coupling 
function via the calculation of the activation function, which is a 
nonlinear function. Furthermore, the activation function is key for 
adjusting the gradient during activation training. Various activation 
functions are used in neural networks, including the linear, sigmoid, 
tanh, exponential, softmax, rectified linear unit (ReLU), ELU　

(Exponential Linear Unit), and SELU(Scaled Exponential Linear Unit) 
functions.

2.3 SVM
The SVM was introduced by Boser et al. (1992), who were inspired 

by the concept of statistical learning theory. SVM regression performs 
training to include the maximum amount of data within the specified 
margin error limit line. The limit line adjusts the width of the margin 
based on the hyperparameter. Here, the margin implies the distance 
between the grain boundary and support vector. The procedure of 
applying the SVM to the regression problem is as follows (Eqs. (6)–
(7)). First, the dataset for training is distinguished.







 ∈ ∈  (6)

where  is the input variable,  the output variable,   the 
n-dimensional vector space, and   the one-dimensional vector space. 

(a)

(b)

Fig. 2 Artificial neural network: (a) Neural network diagram of element; (b) typical layout of neural network
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The loss function of ∈  can be expressed as follows:


    For   or 

   (7)

Based on the equation above, if the predicted value is within the 
expected range, then the loss function is 0; if the predicted value is 
outside the expected range, then the loss function of ∈  is 
defined such that the loss is equal to the absolute value of the standard 
deviation minus ε. The main purpose of the vector machine is to 
provide the deviation of ε in the actual output value and to obtain a 
uniform function .

Finally,  can be expressed as follows (Eqs. (8)‒(9)):

  
  






 (8)

 exp

∥
∥

 (9)

where   and 
  are Lagrangian coefficients, and  represents 

the kernel function. In general, homogeneous polynomials, polynomial 
kernels, Gaussian radial basis functions, and hyperbolic tangent 
functions are used as the kernel function. 

2.4 Gaussian Process Regression (GPR)
The Gaussian process regression (GPR) model is a probability 

model based on nonparameteric kernels. The Gaussian process  is 
a set of random variables  in the range of    ∈, where 
a finite number of randomly selected variables,     , 
among them exhibits a combined Gaussian density (Na et al., 2017). 
The GPR model for the new input vector (≠  ) and training data 
predicts ≠  . The linear regression model is expressed as follows:

  ⊤ (10)

where  ∼  , and the error variance () and coefficient () are 
calculated based on data. The GPR model describes predictions by 
introducing potential variables in the Gaussian process 

, 
     and the explicit basic function . The covariance 
function of the hidden variable provides flexibility to the response, and 
the basic function transmits the input of  to the -dimensional feature 
space. The Gaussian process is a random variable set that comprises a 
finite number of Gauss distributions. If  ∈ is a Gaussian 
process and   contains the observed values    , then the 
random variables 


 

 exhibits a Gaussian 
distribution. The Gaussian process is defined by the mean function 
() and covariance function (′). 

   (11)

 ′  ′′ (12)

∼ ′ (13)

⊤ (14)

Here,  is a basic function set that transmits the existing feature 
vector  of   to the new feature vector . 




 
∼


⊤

   (15)

Therefore, the GPR model can be represented as a probabilistic 
model as in Eq. (15), and the hidden variable 

 is introduced to 
observe each   (Koo et al., 2016).

2.5 Ensemble Method
The ensemble method is developed to improve the performance of 

the classification and regression tree. It generates an accurate 
prediction model by creating several classifiers and combining their 
predictions. In other words, it is a method of deriving a high-accuracy 
prediction model by combining several weak classifier models, instead 
of using a single strong model.

The ensemble models can be primarily categorized into bagging and 
boosting models. Bagging is a method of reducing variance using the 
averaging or voting method on the results predicted using various 
models, whereas boosting is a method of creating strong classifiers by 
combining weak classifiers.

2.5.1 RF
RF is a method of improving the large variance of the decision tree 

and the large performance fluctuation range. It combines the concept 
and properties of bagging with randomized node optimization to 
overcome the disadvantages of existing decision trees and improves 
generalization. The process of extracting bootstrap samples and 
generating a decision tree for each bootstrap sample is similar to 
bagging. However, it is different from the conventional decision tree in 
that a method of randomly extracting predictors and creating an 
optimal split within the extracted variables is used instead of selecting 
the optimal split within all predictors for each node (Kim et al., 2020). 
In other words, RF combines the randomization of predictors while 
determining slightly different training data through bootstrap to obtain 
maximum randomness. Hence, several low-importance learners are 
created. The important hyperparameters used in an RF include 
max_features, bootstrap, and n_estimator. The max_features 
parameter refers to the maximum number of features to be used in each 
node. The bootstrap allows redundancy in data sampling conditions for 
each classification model. The n_estimator refers to the number of 
trees to be created in the model (Kim and Kim, 2020).

2.5.2 Boosting method
Boosting is a technique for creating a strong classifier from a few 
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weak classifiers. It is a model created by boosting weights on data at 
the boundary. The adaptive boosting (AdaBoost) algorithm is the most 
typically and widely used algorithm among ensemble learning 
methods. Specifically, it is one of the boosting series in ensemble 
learning. In AdaBoost, after a weak classifier is generated using the 
initial training data, the distribution of the training data is adjusted 
based on the prediction performance afforded by the training of the 
weak classifier. The weight of the training sample with low prediction 
accuracy is increased using the information received from the classifier 
in the previous stage. In other words, the training accuracy is improved 
by adaptively changing the weights of samples with low prediction 
accuracy in the previous classifier. Finally, a strong classifier with 
slightly better performance is created by combining these weak 
classifiers with low prediction performance. GBR is a method of 
sequentially adding multiple models such as the AdaBoost model. The 
most significant difference between the two algorithms is the method 
by which they recognize weak classifiers. AdaBoost recognizes values 
that are more difficult to classify by weighting them. By contrast, GBR 
uses a loss function to classify errors. In other words, the loss function 
is an index that can evaluate the performance of the model in learning 
specific data, and the model result can be interpreted based on the loss 
function used.

AdaBoost can be used for both classification and regression. In 
general, when a regression problem is considered, the training data set 
can be expressed as follows:

  
  

 
  (16)

where 
   is the th sample of the training dataset,  

the total number of samples,   the input data vector value, and   the 
output data value.

Next, we can train a weak classifier  using a specific learning 
algorithm, and the relative prediction error   of each sample is 
expressed as follows:


 

 
 (17)

where ∙ is the loss function. In general, three options are available: 
linear loss, square loss, and exponential loss. For a simple explanation, 
the linear loss is applied as follows:




    (18)

where   max


is the maximum absolute error of all 
samples.

The performance of one weak classifier will inevitably be 
unsatisfactory. Hence, the objective of AdaBoost is to sequentially 
generate weak classifiers    , and then combine them. 
A strong classifier  is composed of a few combination strategies. 
For regression analysis, the combination is expressed as follows:

 
  



ln

  (19)

where   is the weight of the weak classifier (
),  is the 

median of all  ,  = 1,2,...,, and ∈  is used as a 
regulatory factor or to prevent overfitting. Both the weak classifier 
(

) and weight   are generated using the modified value of the 
existing learning data. As such, the distribution weight of each sample 
is adjusted based on the error predicted by the previous weak classifier 
(   ). Incorrectly predicted samples are repeatedly trained by 
increasing the weight such that they will be prioritized in the next 
learning process. During the iteration of  = 1,2,...,, the weak 
classifier () and relative prediction error   are calculated using 
Eq. (19). Subsequently, the total error rate   is expressed as follows 
(Eq. (20)):

  
  



 (20)

Furthermore, the weight   of the weak classifier can be represented 
as follows (Eq. (21)):




 (21)

Finally, for the next step learning, the weight distribution of each 
sample (   ) is updated again as follows (Eq. (22)):

  



  





  



  

(22)

Between the two types of weights (
 ) defined above, the first 

() involves training the data sample and is used to enable better 
training in the next step after the weight of the incorrectly predicted 
sample is increased. The second () implies a weak classifier and is 
used to such that a more accurate weak classification will impose a 
greater effect on the final result. AdaBoost provides a stronger 
framework than specific learning algorithms because it does not 
provide a specific form of the weak classifier . Theoretically, 
every type of ML regression algorithm can be used as a weak classifier 
in AdaBoost. 

3. Application of ML in Coastal and 
Marine Engineering Field

3.1 Wave Prediction
Accurate wave estimations can be applied to coastal engineering, 

marine transportation, and leisure sports. For example, the 
transportation route can be optimized by reducing the transportation 
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time through accurate wave information prediction, which can provide 
accurate prediction information regarding the generation of wave 
energy. Furthermore, useful information can be provided to surfers in a 
surf zone by providing wave information at a coast. Significant wave 
height is an important parameter in coastal port structure design and 
construction. Most physics-based models are applied to estimate such 
wave information. However, wave estimation studies based on ML 
models have increased recently (Deo and Naidu, 1999; Balas et al., 
2004; Mahjoobi et al., 2008; Shahabi et al., 2016; Oh and Suh, 2018; 
Garcia et al., 2021).

James et al. (2018) developed an ML model to predict the 
characteristics of wave distributions. Data were generated via a few 
thousand rounds of iterative learning using a physics-based model 
known as the simulating waves nearshore (SWAN) model. 
Furthermore, a model for predicting the significant wave height and 
peak period using a multilayer perceptron and an SVM was proposed. 
A total of 741 input variables were applied considering the wave 
conditions at the interface ( ,  ,  ), flow distribution within the 
grid (,), wind speed, and wind direction. Meanwhile, 11,078 data 
points were used for training, where two output variables (i.e., the 
significant wave height and peak period) calculated using the SWAN 
model were applied (Table A1). The result shows that the ML model 
reproduced more than 90% of the wave characteristics of the 
physics-based model, with an MSE of 9 cm. Moreover, the 
computation time is shorter compared with that afforded by the SWAN 
model; therefore, it is expected to be a promising alternative to the 
physics-based model. Fig. 3 shows a heat map presenting the 
difference (∆) between the value predicted by the representative ML 
model and the value calculated using the SWAN model for the result of 
the ML model based on data derived from the calculations of 11,078 
cases using the SWAN model. The image on the left shows the result of 

underestimating the significant wave height to a maximum of 15 cm 
near the bay, although the RMSE is 6 cm. However, the image on the 
right indicates an RMSE of 14 cm, although the error near the bay is 
smaller, and a clear location-based trend is not shown. Although 
statistical values such as the RMSE are important, the reliability of the 
model may differ by the application purpose. Therefore, the accuracy 
should be further improved through additional data analysis.

Shamshirband et al. (2020) constructed three ML models, i.e., the 
ANN, support vector regression (SVR), and the extreme learning 
machine (ELM) for wave height estimation and compared their 
performances with the results of the SWAN model. The input variable 
applied to the ML models was the near-surface wind speed, and the 
output variable was the significant wave height measured at the 
Bushehr and Assulayeh Ports of the Persian Bay. These variables were 
applied to training. The prediction performance of the ELM model was 
excellent, and the ML-based model of the Bushehr Port was reliable. 
However, for the Assaluyeh Port, the prediction accuracy for the 
significant wave height was low, and a correction was performed to 
improve the efficiency. Furthermore, the result of the ML model 
underestimated the extreme values. Hence, accurate input values and 
data preprocessing technology are necessitated to improve the result. 
The results of the SWAN model underestimated the extreme wave 
height. Both models require improvement for predicting extreme wave 
conditions. The ML-based model can be implemented at a low 
computational cost without requiring the depth information. However, 
unlike the SWAN model, it requires a separate model to predict the 
wave height of locations other than the two points used for training.

Chen et al. (2021) proposed a new surrogate model developed using 
the RF method, which is an ML model, based on spatial wave data 
estimated using the SWAN numerical model. Twelve input variables 
were used for model training: the significant wave height ( ), mean 

Fig. 3 Figure from James et al. (2018), who used ANN and SVM to predict the significant wave height ( ) and wave period (). 
Differences between SWAN- and machine-learning-simulated   selected from 11,078 SWAN model simulations are shown. 
Image of wave height differences on the left shows local discrepancy trends (RMSE = 6 cm in this image), which are not 
evident in the figure on the right, which in fact has a higher RMSE (i.e., 14 cm). Nevertheless, the domain shows primarily 
near-zero RMSEs, with local deviations at locations closer to the shoreline, where secondary effects are the most prominent.
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wave direction ( ), period ( ), and peak period () at three 
buoys. For the output variable, the spatial wave information derived 
via SWAN calculation was used. The result of the ML model agreed 
better with the on-site buoy observation values than with the result of 
the SWAN model, and the computation time of the ML model was 100 
times shorter than that of the SWAN model.

Kim et al. (2010) calculated the expected damage of an inclined 
breakwater using an ANN. The ANN, which uses the tide level and 
deep-sea waves as input, was trained to predict shallow-sea significant 
waves. They proved that a high degree of expected damage can be 
estimated within a short duration by calculating the shallow sea waves.

Kang and Oh (2019) investigated the prediction of swell wave 
generation using the RF, logistic regression, the K-nearest neighbor 
algorithm, the ANN, and the SVM. Changes in the water temperature, 
atmospheric pressure, and tide level were confirmed as primary 
variables for predicting swell high waves. Furthermore, the RF model 
performed the best (prediction accuracy: 88.6%).

Park et al. (2020) estimated the significant wave height of an X-band 
radar using an ANN; this method was demonstrated to be superior over 
the conventional wave height observation method. The result of a 
comparative analysis based on Hujeong Beach in Uljin confirmed the 
high accuracy of the calculated significant wave height.

Lee et al. (2020) conducted a wave breaking prediction study using 
an open-source ML algorithm to quantitatively predict wave breaking 
on a coast. The prediction results for the wave breaking wave height 
and depth by their trained neural network showed better prediction 
performance compared with the results calculated using the 
conventional empirical formula.

3.2 Tide Level Prediction
Accurate predictions of the tide level are crucial because the tide 

level significantly affects navigation, leisure activities, and coastal 
ecosystems. Tides refer to the periodic ascent and descent of the 
Earth’s sea level due to tidal forces caused by the sun and moon. Thus, 
the tide level is an important parameter in terms of coastal engineering, 
maritime safety, and maritime activities. Various other factors such as 
the wind speed and atmospheric pressure must be considered in 
addition to the tide level. A harmonic analysis method in which many 
sine wave components are superimposed is generally used to predict 
the tide level; however, the effects of time-dependent factors are 
difficult to consider in this method. This paper introduces research 
cases that apply an ML model for tide level prediction in coastal and 
marine engineering.

The conventional harmonic decomposition method requires a 
significant amount of observational tidal data. Moreover, the 
parameters of the harmonic analysis model are estimated using the 
least-squares method based on data obtained for a long duration (i.e., 
more than 1 month). Lee (2004) constructed an ANN model using 
short-term measurements for tide level prediction and applied the 
cos   and sin  functions for 69 tidal components as input 
variables. Consequently, the primary components were determined 
based on two months’ worth of measurement data. A comparison 
between the ANN and harmonic analysis models showed improved 
accuracy by the ANN model. Moreover, when 15 d of observation data 
were applied to training, the model presented prediction results that 
were applicable for predicting the tide levels for 1 year.

These tidal changes involve complex processes that are affected by 
not only the movement of celestial bodies, but also by nonperiodic 
meteorological factors such as wind, atmospheric pressure, and water 
temperature. However, the effect of time-dependent factors cannot be 
considered using the conventional harmonic analysis method. 
Therefore, Li et al. (2018) developed a tide level prediction model 

Fig. 4 Figure from Granta and Nunno (2021), who used M5P, RF and ANN to predict tide level. Forecast of tide fluctuations with 5
h advance: comparison between ML-based and ARIMAX models.



Review on Applications of Machine Learning in Coastal and Ocean Engineering 201

using the ELM to consider various nonlinear factors such as wind, air 
pressure, and water temperature. They presented results with higher 
accuracy and time efficiency than those yielded by conventional 
harmonic analysis models.

Granta and Nunno (2021) suggested a tide level prediction model 
using M5P, RF, and ANN algorithms (which are ML models). A total 
of 28 input variables were used in that study, including the 
astronomical tide (AT), wind speed (WS), barometric pressure (BP), 
and previously observed tide levels (   to  ) to construct a tide 
level prediction model. Fig. 4 shows the tide level prediction results 
using the three ML models and the ARIMAX regression analysis. The 
M5P model showed a high coefficient of determination of 0.924–
0.996. The result of sensitivity analysis showed high-level prediction 
results without considering meteorological factors (WS, BP), including 
for exceptionally high water levels. These results suggest that the 
training dataset can be continuously updated and applied to sea level 
fluctuations caused by climate change and subsidence.

3.3 Estimation of Design Variables
Several phenomena pertaining to wave–structure interactions exist, 

such as reflections in the structure, wave breaking on the slope and at 
the front, dissipation, wave runups and rundowns, transmitted waves, 
and overtopping. Therefore, techniques for understanding and 
quantitatively estimating these phenomena are required for the design 
of structures. Various studies have been conducted to estimate the 
primary design variables (Goyal et al., 2014; Lee and Suh, 2019; Lee 
and Suh, 2020; Etemad-Shahidi et al., 2016; Najafzadeh et al., 2014). 
Herein, we provide examples of applying the ML model for calculating 
the stability number, overtopping rate, wave transmission coefficient, 
and reflection coefficient.

3.3.1 Estimating stability number
Kim and Park (2005) constructed a stability number calculation 

model for rubble-mound breakwater using an ANN. For the input 
variables of the model, seven parameters were applied, including 
porosity (), the number of wave attacks ( ), damage level (), 
structure slope (cos), wave height ( ), wave period ( ), 
dimensionless water depth ( ), and spectral shape (). Moreover, 
the stability number ( ) was set as the output model. The result shows 
that the ML model demonstrated higher accuracy in predicting the 
stability number and damage level compared with the results obtained 
using the conventional empirical formula. Therefore, it can be utilized 
for design purposes.

Yagci et al. (2005) modeled the damage rates of different 
breakwaters using ANN, multiple LR, and fuzzy models. The 
experimental results yielded by the multiple LR model were 
unsatisfactory. However, they reported that the neural network and 
fuzzy model results can be estimated through interpolation for missing 
values.

Etemad–Shahidi and Bonakdar (2009) constructed a stability 
prediction model for rubble-mound breakwater using the M’5 model. 

Five input parameters were applied to the model: porosity (), the 
number of wave attacks ( ), damage level (), surf similarity 
coefficient ( ), and dimensionless water depth ( ). Based on 
comparison, the results obtained showed higher accuracy compared 
with those obtained using the conventional Van der Meer empirical 
equation. A new equation was derived based on the M5’ model, which 
proved to be useful for engineering design.

Based on the experimental data of Van der Meer et al. (1988), Koc et 
al. (2016) suggested a stability number prediction model for 
breakwater using the genetic algorithm. The experiment result showed 
that the genetic algorithm afforded better prediction performance than 
the empirical equation for the stability number.

3.3.2 Estimating overtopping rate 
EurOtop is a representative result of a study that predicted the 

overtopping rate using an ML tool. In the Crest Level Assessment of 
Coastal structures by Full-scale Monitoring, Neural Network 
Prediction, and Hazard Analysis on Permissible Wave Overtopping 
(CLASH) project (De Rouck et al., 2004), an ANN model was 
developed to predict the mean overtopping rate,  (Pullen, 2007).

Van Gent et al. (2007) constructed an ANN-based prediction model 
to estimate the overtopping rates of various coastal structures. A 
database comprising approximately 10,000 mathematical model data 
points obtained from the European CLASH project was used for model 
training. A complexity factor and a reliable factor (RF) were 
introduced to increase data reliability. Data with low reliability or high 
complexity were excluded from training. Subsequently, the remaining 
data were converted to   = 1 m by applying Froude’s law of 
similarity to match with the mathematical model test results. Fig. 5 
describes the parameters used for training. As input variables, 15 
parameters describing wave characteristics (e.g., the significant wave 
height, average period, and wave direction) and factors pertaining to 
the structural shape (e.g., ridge depth, crest width, and slope) were 
applied. The mean overtopping rate () was set as a dependent variable. 
The result suggests that the ANN model is sufficiently applicable for 
modeling the correlation between the input variables related to 
overtopping and the average overtopping rate in coastal structures. 
However, all datasets were applied for training without segmenting the 
dataset in this study, and data with  < 10-6 m3/s/m were excluded from 
training. Therefore, the generalization of the model is likely to be 
difficult.

Subsequently, errors in the CLASH database were corrected, and 
more than 17,000 datasets were expanded through the Innovative 
Technologies for Safer European Coasts in a Changing Climate project 
(Zanuttigh et al., 2014). The calculation for the overtopping rate and 
the estimated results for uncertainty were presented using an ANN 
model. In previous studies, data with  < 10-6 m3/s/m were removed as 
measurement errors by experiment were assumed to have increased. 
However, Zanuttigh et al. (2016) categorized all data into three 
quantitative classifiers and constructed a training and a prediction 
model. The result showed improved prediction accuracy compared 
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with the results of previous studies, and the generalization performance 
was high even for data not used for training.

Den Bieman et al. (2020) and Den Bieman et al. (2021) constructed 
an overtopping rate prediction model using extreme gradient boosting 
(XGBoost)—an ML model. The result shows that the prediction error 
was 2.8 times lower than that of the existing neural network model. 
Moreover, they conducted variable importance analysis via feature 
engineering. The result shows that the XGBoost model can be 
successfully applied as an alternative to the ANN model.

Hosseinzadeh et al. (2021) constructed a mean overtopping rate 
prediction model for an inclined breakwater using GPR and SVR 
models, which are two kernel-based ML models. The result showed 
that the accuracy of the GPR model was higher than that of the 
conventional ANN model and empirical formula. Furthermore, they 
derived an optimal combination of input variables through sensitivity 
analysis and demonstrated that the prediction yielded is more accurate 
than that afforded by the combination of input variables by Van der 
Meer et al. (2018).

3.3.3 Wave trasmission and reflection coefficients
Formentin et al. (2017) proposed a prediction model for the mean 

overtopping rate and wave transmission/reflection coefficients (  and 
 ) using the CLASH database to predict wave–structure interactions. 
An ANN was applied (as an ML model), and 15 nondimensional input 
variables were applied while considering the structural characteristics 
(geometric structure, amplitude, and roughness) and wave attack (wave 
slope and wave direction). Moreover, the overtopping rate, wave 
transmission coefficient, and reflection coefficient were set as output 
variables. The result showed that the ANN model afforded a higher 
prediction accuracy than the existing empirical formula and can be 
useful for design.

Kuntoji et al. (2018) proposed a prediction model for the wave 
transmission rate of underwater breakwaters using SVM and ANN 
models. They developed a model by applying eight input variables, 
including the wave slope (

) and relative reef width. The 
prediction result showed that the SVM model to which the kernel 
function was applied afforded a higher accuracy than the ANN model 
with an coefficient of dtermination () value of 0.984.

Gandomi et al. (2020) estimated the wave transmission and 
reflection coefficients of permeable breakwater structures using a 
genetic algorithm, an ANN, and an SVM. Seven input variables 
including the porosity, relative wave height, and wave slope were 

Fig. 5 Schematic illustration of structure based on CLASH, including geometrical and hydraulic parameters

(a) (b)
Fig. 6 Figure from Kim et al. (2021), who used ML model to predict the wave transmission coefficient. Graphs show the variable importance,

where the x-axis represents the average absolute Shapley values of the input variables throughout the data. (a) SHAP feature importance;
(b) summary plot (feature effects).
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applied as input variables. Moreover, the wave transmission and 
reflection coefficients were set as output variables. The result showed 
that the exponential GPR model performed the best for a correlation 
analysis between experimental and predicted values. They proposed a 
formula for calculating wave transmission and reflection coefficients 
using a Gaussian model.

Kim et al. (2021) constructed an ML model for estimating the wave 
transmission coefficient of low-crested structures using data from a 
mathematical model used in an experiment conducted through the 
DELOS project. They adjusted the hyperparameters via grid search for 
10 ML models such as GBR, AdaBoost, and Gaussian regression, and 
selected an ML model suitable for the data. Seven nondimensional 
input variables such as the relative ridge depth and relative crest width 
were applied as input variables, whereas the wave transmission 
coefficient was set as an output variable. In addition, they analyzed the 
correlation between the input variable and the dependent variable using 
an explanatory AI technique and determined the dominant factor 
affecting the prediction of the wave transmission coefficient. Fig. 6 
shows the variable importance results for each input variable based on 
the dependent variable analyzed using the ML analysis tool. The factor 
related to the ridge depth contributed the most toward the prediction of 
the output variable. This suggests that the reliability of the model 
should be improved through model analysis instead of constructing a 
simple ML model.

3.4 Prediction of Morphological Changes
Studies for further understanding and predicting shoreline 

fluctuations have been actively conducted, owing to the possibility of 
increasing coastal erosion acceleration promoted by climate change 
over the past few decades. The quantitative prediction of coastal 
erosion and restoration is effective for mitigating erosion risks and is 
essential for establishing a strategic beach management plan. 
Therefore, the prediction of beach profile deformation due to waves 
and beach currents is one of the most important tasks in coastal 
engineering. Various factors such as wind and waves, beach slope, tide 
level, sediment particle size, and storm surge frequency can affect 
beach deformation. Various approaches are available for predicting 
changes in the beach profile. Sediment movement, erosion, and 
deposition along a coast are primarily estimated based on empirical 
formulas; however, the corresponding physical mechanism has not 
been fully clarified. Recently, data-based ML models have been 
introduced and used for predicting shoreline fluctuations, barrier 
islands, and sand dune erosion (Yoon et al., 2013; Wilson et al., 2015; 
Passarella et al., 2018).

Hashemi et al. (2010) predicted the seasonal variation characteristics 
of beach profiles using an ANN model based on seven years’ worth of 
beach profile data from 19 stations near Tremadoc Bay. Nine 
parameters were applied as input variables for the model, i.e., the 
minimum wind speed, wind direction, continuous storm frequency, 
storm frequency, significant wave height, significant period, wave, 
beach slope, and wind duration. In addition, they constructed a model 

using 12 output variables, i.e., the elevation of 10 points of each 
cross-sectional profile, the area under each profile curve, and the 
length of the profile. The result showed that the MSE converged to 
0.0007 compared with the observed value, demonstrating the high 
prediction accuracy of the model in estimating beach variability 
characteristics. These study results suggest that the ML model can be a 
more effective tool for predicting changes in the beach profile than the 
mathematical model for the same points, owing to the complexity and 
uncertainty associated with the physical understanding of 
morphological dynamics at the shore. However, the ML model is 
applicable to only previous measurement data; it cannot be applied 
easily to abnormal climates or structures that are not reflected in the 
training data. Therefore, a study combining mathematical models and 
ML is necessary.

Rigos et al. (2016) constructed a model comprising an ANN using 
the feedforward method to predict the beach circulation pattern of a 
coast comprising a reef. The beachrock reef in front of the beach 
increased the complexity of wave actions and nonlinearities. Legendre 
polynomials were applied as an activation function to reflect this 
nonlinearity. Data for training were obtained from long-term 
time-series data for 10 months from January to November 2014 on the 
target coast. Six independent variables were applied as input variables, 
i.e., the ridge depth, structure slopes, structure width, significant wave 
height, and peak wave period. Subsequently, the model was built by 
setting the offshore distance as a dependent variable.

López et al. (2017) predicted the sandbar generated on a coast by 
applying an ANN model. Seven input variables were applied, 
including the wave characteristics, sediment characteristics, and time 
data. A model was constructed to predict the location of the sandbar 
crossing the shore based on six dependent variables at the barrier 
islands’ feature points (start, ridge, and end points). The results showed 
that the error of the neural network model was lower than that of the 
general empirical formula for predicting the characteristics of barrier 
islands.

Montaño et al. (2020) conducted a workshop and contest related to 
the shoreline fluctuation model “Shoreshop,” where participants from 
15 international organizations tested and improved the performance of 
the model for predicting shoreline changes. They presented the result 
of a modeling contest, in which 19 models including the conventional 
numerical model were tested using the data pertaining to the daily 
average shoreline position and beach rotation for approximately 18 
years (between 1999 and 2017) in the target sea, Tairua Beach. The 
result showed that the performance of the ML model was comparable 
to those of conventional numerical models. In fact, the multiyear 
variability at shorelines, which is difficult to simulate using 
conventional numerical models, can be analyzed easily using their 
model. Fig. 7 shows the results of shoreline fluctuations predicted 
using a numerical model, an ML model, and a hybrid model. Shoreline 
fluctuations during extreme events that occurred on a short time scale 
(~monthly) was difficult to reproduce using the general numerical 
model. Meanwhile, the ML model adequately reproduced shoreline 
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fluctuations in extreme events. However, the ability of the ML model 
in predicting the shoreline position deteriorated for the case involving 
data not used for training (2014–2017). Therefore, the ML (inductive) 
and numerical (deductive) models complement each other in 
estimating shoreline fluctuations owing to their different approaches. 
Consequently, the ensemble approach combining the ML and 
numerical models improved the prediction reliability and reduced the 
uncertainty of the model.

4. Conclusions

In this study, we examined waves, tide level and sea level 
fluctuations, design variable estimation, and morphological changes in 
several studies that applied ML in coastal engineering. Based on 
extensive studies, the ML model proved to be a reliable in solving 
problems related to coastal engineering. The ML model can be 
constructed by learning the correlations between the input and output 

Fig. 7 Figure from Montaño et al. (2020), who used ML and numerical model to predict shoreline evolution. Model outputs (see legends)
compared with observations (black): (a) Hybrid models; (b) ML models; (c) HM and ML ensemble; (d) multimodel ensemble; (e)
rotation models; (f) hybrid model ensemble for beach rotation. Dark shadows in ensemble figures represent one standard deviation 
of model prediction. Light shadows represent maxima/minima envelope of model predictions. See Methods section and Supporting
Information for model details.
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variables without basic mathematical and physical understanding 
pertaining to extremely complex interactions and processes associated 
with coastal engineering. However, several factors should be 
considered from the researcher’s perspective to implement such highly 
accurate models, including the following:

(1) Amount of data
A significant amount of training data with various ranges is required 

to construct an ML model. However, the exact amount of data required 
to derive meaningful prediction results remains elusive. Goldstein et al. 
(2019) reported that the performance deteriorates when a significant 
amount of data is applied to a low-complexity model in certain cases. 
These results cannot be generalized to all cases. However, the amount 
of data required for optimal prediction using the empirical knowledge 
of researchers and the method for managing noise in the data must be 
analyzed quantitatively.

(2) Data preprocessing
Actual data were acquired from various sources and processes; 

hence, incomplete data, noise, and inconsistent data that reduce the 
quality of the dataset may be included in the acquired data. Researchers 
must perform appropriate data preprocessing to improve data quality to 
achieve high-performance models. During data preprocessing, the 
model data should be converted into data suitable for the model 
through data cleaning, which replaces missing values or removes noise 
data and outliers. Furthermore, data normalization should be 
performed to reduce dimension and noise by via feature scale 
matching. For example, Zanuttigh et al. (2016) introduced a weight 
factor to the preprocessing process for more than 17,000 data points 
obtained from the CLASH database and reduced the data impurity via 
bootstrap sampling. Furthermore, the range of the dependent variables 
was 10-9<  < 10 but might be underestimated due to error calculation. 
Thus, a study was performed to improve the accuracy of the model by 
converting the dependent variable into log. The reliability and 
accuracy of the model could be further improved through appropriate 
data preprocessing based on the results of previous studies.

(3) Model analysis
An ML model is a black box model with a complex structure. 

Therefore, its intuitive interpretation ability is low for supporting the 
prediction results. To improve the limitations of such black box 
models, explainable artificial intelligence (XAI) is currently being 
conducted. The XAI methodology provides interpretation such that 
humans can understand the results predicted by ML algorithms. The 
model is reliable if the basis on which the model derived the prediction 
results through XAI can be determined. Furthermore, one can 
determine whether the model has been appropriately trained or whether 
the data used for training are appropriate. Kim et al. (2021) analyzed a 
wave transmission coefficient prediction model for low-crested 
structures using the Shapley additive explanation (SHAP). Simple ML 
models should be constructed and reliable model analyses should be 

conducted based on previous results.

(4) Model validation and generalization
ML models generally segregate the data into training and test 

datasets randomly. However, data under extreme conditions or data 
with important information may be excluded from the training process, 
and this possibility should be considered when segregating the data. 
The reliability of the model should be improved through cross- 
validation, such as the k-fold cross validation and leave one out 
cross-validation. Furthermore, the model constructed through 
verification should perform a generalization process using new data 
that have not been used for training. Montaño et al. (2020) presented 
the results of blinding tests on a numerical model and an ML model 
through workshops and competitions pertaining to “Shoreshop,” which 
is a shoreline fluctuation model. The exchange and dissemination of 
knowledge among researchers worldwide should be promoted, and 
problems in coastal engineering should be solved from various angles 
through such modeling contests.

Coastal engineering researchers can obtain new knowledge and 
insights regarding data analysis via ML models. However, the ML 
model is an inductive approach rather than a deductive approach, 
which is the conventional approach used in numerical models. Hence, 
it is difficult to generalize the model based on the range and 
characteristics of the data. For example, in regard to the prediction of 
morphological changes, generalizing all regions based on a single 
model is difficult because the data characteristics of a specific region 
are reflected in the model. Therefore, various problems in the coastal 
engineering field should be solved using an ensemble model that 
combines the conventional numerical model with an ML model, and by 
deriving results that improve prediction performance through a mutual 
complement of their strengths and weaknesses.
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·
·
·
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Zanuttigh et al. 
(2016)
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·
·
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·
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·
·
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6) Relative crest heights (h/d)
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1) Wave transmission 
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ANN
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1) ANN
NHN = 3

2) SVM
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Gandomi et al. 
(2020)

1) Relative chamber width (B/h) 
2) Relative rockfill height (d/h) 
3) Relative chamber width in terms of wavelength (B/Lp) 
4) Wave steepness (Hs/Lp)
5) Wave number multiplied by water depth (kh) 
6) Relative wave height in terms of rockfill height 

(Hs/d)
7) Permeability of the back wall (p)

1) Wave reflection 
coefficient (Kr)

2) Wave transmission 
coefficient (Kt)

LR
SVM
GPR
GP
ANN

1) GPR
Kernel Function = Exp
Kernel Scale = 1.664473
Basic Function = Constant
SSD = 0.063, 0.105
Sigma = 0.063, 0.105
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Reference Input variables Output variables ML model Hyper parameter

Kim et al. 
(2021)

1) Relative freeboard (Rc/H0) 
2) Relative crest width (B/H0) 
3) Surf similarity parameter ()
4) Relative crest width (B/L0)
5) Relative freeboard to water depth ratio (Rc/h)
6) Ratio of the nominal diameter to the crest height 

(Dn50/hc)
7) Relative structure height (hc/h)

1) Wave transmission 
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GPR
ANN
GBR
RF
SVM
LR
·
·
·

-

Morphological and morphodynamic

Hashemi et al. 
(2010)

1) Min wind speed
2) Wind direction
3) Number of successive wind
4) Number of wind
5) Significant wave height
6) Significant wave period
7) Direction of wave
8) Angle of beach
9) Wind duration

1) Elevation of 10points on 
each profile

2) Area under each profile 
curve

3) Length of profile

ANN NHN = 20
AF = tanh

Rigos et al. 
(2016)

1) Freeboard (d)
2) inshore slope ()
3) offshore slope ()
4) reef width (w)
5) Significant wave height (Hs)
6) Peak wave period (Tp)

1) The distance from the 
reef top point to the 
shoreline (y)

ANN NHN = 4
AF = Legendre polynomial

López et al. 
(2017)

1) Month of survey profile
2) Steepness corresponding to the maximum wave 

height
3) Hmax direction
4) Days elapsed from Hmax to the survey profile
5) Hm

6) d50

7) Difference in beach width between profiles

1) Distance from shoreline to 
the start of the bar (Xs)

2) Depth of the starting point 
of the bar (Ys)

3) Distance from shoreline to 
the crest (Xc)

4) Depth of the crest (Yc)
5) Distance from shoreline to 

the final of the bar (Xf)
6) Final point depth (Yf)

ANN NHN = 12
AF = sigmoid

NHN = Number of Hidden Neuron, AF = Activation Function, OP = Optimizer
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