• Title/Summary/Keyword: occupational radiation exposure

Search Result 116, Processing Time 0.029 seconds

Study in Occupational Exposure to Radiations and Radioactive Isotopes (방사선 및 방사성동위원소 근로자 피폭실태 연구)

  • Lee, Du-Yong;Kim, Kwang-Jin;Park, Hee-Chan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.6
    • /
    • pp.247-255
    • /
    • 2009
  • This study aims to provide basic data for establishing the safety and health plan by investigating the exposure conditions in the facilities registering business about handling radiations and radioactive isotopes in Korea. dose levels(working space, worker location) of the workers in 153 facilities were measured using surveymeter, and individual exposure concentration[(shallow dose(SD), depth dose(DD)] in 27 facilities using thermal luminescence dosimeter(TLD). In accordance with the measurement results by business type[fire fighting prevention business(FFPB, n=10), financial insurance business(FIB, n=3) and other facilities(n=140)] using surveymeter, those three business type groups showed difference (p<0.000). Dose levels of worker location for FFPB and FIB were significantly higher than 10.0 ${\mu}Sv$/hr, the allowable standard for radiations and radioactive isotopes, and they were higher 109.3 times(p<0.000) and 187.5 times(p<0.000) than those in other facilities. The concentration of TLD[FFPB(n=10), other facility (n=17)] in DD of FFPB was significantly higher than that in other facility(p=0.05). In accordance with the analysis result on relationship between surveymeter and TLD, the dose on working space and worker location(r=0.406, p<0.05), worker location dose and SD(r=0.453, p<0.05), worker location dose and DD(r=0.553, p<0.01), and SD and DD(r=0.927, p<0.001) had all related each other. It is urgently required to change FFPB and FIB from the facilities requiring registration for handling radiations and radioactive isotopes to the facilities that shall get permission for handling radiations and radioactive isotopes by reestablishing the legal administration area, for safety and health of radiation occupants.

Process and Results of Seoul Metropolitan Government's Environmental Health Policy Road Map (서울시 환경보건정책 로드맵 수립)

  • Lim, Ji-Ae;Kwon, Ho-Jang;Kim, Shinbum;Chou, Youngeun;Gu, Seulgi;Jeong, Hoi-Seong;Kim, Myung Han;Choi, Kyungho
    • Journal of Environmental Health Sciences
    • /
    • v.40 no.5
    • /
    • pp.425-434
    • /
    • 2014
  • Objectives: The purpose of this study is to introduce the establishment process and results of the Seoul Metropolitan Government's road map on environmental health policy. Methods: The process consisted of expert group meetings, civic participation, research, and questionnaire survey for priority environmental health policy agenda items in Seoul. Results: The announced vision for the environmental health policy was "a healthy environment, safety in Seoul". This policy was established in order to define environment health policy initiatives for a period of five years with an aim to protect Seoul citizens' health from hazardous environmental factors. The resulting Seoul environmental health policy consisted of four areas and 16 key agenda items. The four areas were "Protection for children against hazardous materials", "Enhancement of health and safety of all", "Carcinogen-free and endocrine-disrupting chemical-free Seoul (reducing environmental exposure to hazardous materials), and "Establish the foundation of environmental health policy". Sixteen key agenda items include the enhancement of management of spaces for children, certification of environmental health status at schools, establishment of a unit responsible for the environmental health of children, strengthening environmental health management for susceptible populations (children, the aged, and the socioeconomically vulnerable), management of hazardous materials, physical hazardous factors (noise, radiation, etc.), indoor air quality, and the enhancement of monitoring, research, and regulation of environment health. Conclusion: The Seoul Metropolitan Government established an environmental health policy road map for a five-year period (2013-2017). To implement this environmental health policy, budget allocation, and detailed execution plans are required.

Chromosome Aberration in Peripheral Lymphocyte of Radiation Workers in Hospital (병원내 방사선작업종사자들의 염색체이상빈도)

  • Yi, Chun-Ja;Ha, Sung-Whan;Jung, Hae-Won
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.4
    • /
    • pp.227-235
    • /
    • 1997
  • Cytogenetic studies were performed in peripheral blood lymphocytes from hospital workers occupationally exposed to low doses of radiation (0.30 - 40.07mSv). The workers were divided into three groups according to their job area : 18 diagnostic radiology, 17 therapeutic radiology, and 16 nuclear medicine. The control group consisted of 49 non-radiation workers with no history of exposure to radiation. A higher percentage of cells with aberration(1.275%) was observed in the workers compared to the controls(0.677%) and the difference was statistically significant(p<0.001). The frequency of chromosomal aberration was $0.706{\times}10^{-2}$/cell in the exposed and $0.344{\times}10^{-2}$/cell in the control(p<0.05). Chromosomal exchange frequency was $0.083{\times}10^{-2}$/cell in the control vs $0.245{\times}10^{-2}$/cell in the workers. There was no evidence of significant increase of chromosome aberration related to age or to the duration of employment. The frequency of chromosomal exchange in workers of nuclear medicine was $0.313{\times}10^{-2}$/cell, which was significantly higher than in the control($0.083{\times}10^{-2}$/cell) or other working groups: therapeutic radiology($0.265{\times}10^{-2}$/cell), and diagnostic radiology($0.167{\times}10^{-2}$/cell). No dose-effect relation was found between chromosome aberration and total cumulative doses, recent 5 yr, recent 2 yr cumulative dose. But in case of last 1 yr cumulative dose, dose-dependant increase was observed when controls were considered(p<0.05). The radiation dose which workers have received was much lower than the maximum permissible dose, but there was a significant difference in the frequency of chromosome aberration between occupationally exposed workers and control. So, it is clear that chromosome aberration is a quite sensitive indicator of radiation exposure and it can be detected at very low dose level of occupational exposure.

  • PDF

A Study on Enacting the Radiologic Technologist Act for the Civil Right to Health in Korea (건강권과 방사선사법 제정에 관한 고찰)

  • Lim, Chang-Seon
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.313-320
    • /
    • 2007
  • There are the Medical Radiation Health and Safety Act(the Patient Radiation Health and Safety Act, the Radiologic Technologist Act), the Medical Laboratory Technologist Act, the Physical Therapy Practice Act, and the Dental Hygienist Act, etc in America. However, Korea has only one Act for a medical radiologic technologist(including radiation therapy technologist, nuclear medicine technologist), medical laboratory technologist, physical therapist, occupational therapy examiner, dental hygienist, and so on. It is the Medical Technologist Act. Therefore, the Medical Radiation Health and Safety Act for a radiologic technologist(including radiation therapy technologist, nuclear medicine technologist) has to be enacted independently in Korea. It is the purpose of this Act to provide for the appropriate certification of persons using radioactive materials, equipment emitting ionizing radiation on humans or performing medical imaging for diagnostic and therapeutic purposes. In Korea, the radiologic technologist is a "fusion technologist" who is a person other than a licensed practitioner as a radiographer, radiation therapist, nuclear medicine technologist, computed tomography technologist, magnetic resonance technologist, mammographer, sonographer, medical dosimetrist, quality management technologist, etc. This Act will have some provisions related to the definitions, reserved title, scope of practice, specialized technologist, application for licensure, radiologic technology council, renewal, continuing education, the radiation control advisory commission, etc. This Act will ensure that quality radiation therapy treatments are delivered and that quality diagnostic information is presented for interpretation, which will lead to accurate diagnosis, treatment and cure. Accurate diagnosis can be provided only when a personnel is properly educated in technique, equipment operation and radiation safety. In the end, this Act will protect the civil right to health. By regulating the personnel responsible for performing those procedures, this Act will mean improved care for patients-higher quality images, improved accuracy, and less exposure to radiation.

  • PDF

A Study on the Implementation of Dose Constraints in Occupational Dose According to ICRP 103 Recommendations in Korea (ICRP신권고에 따른 직무피폭에서의 선량제약치 국내 적용 방안 연구)

  • Kim, Yong-Min;Cho, Kun-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.36 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • In 2007, the International Commission on Radiological Protection (ICRP) published Recommendations of the International Commission on Radiological Protection. Accordingly IAEA safety standards committees have reviewed and revised the BSS. The process of the implementation of the ICRP 103 into Korean radiation protection regulations has been continued. Although the new recommendations retain the fundamental protection principles, the impact of the new ICRP recommendations will necessarily be greater than ever before. ICRP recommends the application of dose constraint in planned situations and reference level in existing & emergency situations for strengthening of the principle of optimization. Dose constraints and reference level play a criterion on the level of individual dose as prospective and source-related values. Therefore it is necessary to apply dose constraints and reference levels to all nuclear and RI&RG facilities in Rep. of Korea. Dose constraints and reference level of occupational exposure will be set-up by the stakeholder itself with the cooperation of regulatory body. In this study, the implementation method was discussed to apply the dose constraints and reference level as the procedure for the optimization, not the tool of the regulation.

Radiation Dose and Image Quality of Low-dose Protocol in Chest CT: Comparison of Standard-dose Protocol (흉부 CT촬영에서 저선량 프로토콜의 선량과 화질: 표준선량 프로토콜과 비교)

  • Lee, Won-Jeong;Ahn, Bong-Seon;Park, Young-Sun
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.2
    • /
    • pp.84-89
    • /
    • 2012
  • The purpose of this study was to compare radiation dose and image quality between low-dose (LDP) and standard-dose protocol (SDP). LDP (120 kVp, 30 mAs, 2-mm thickness) and SDP (120 kVp, 180 mAs, 1.2-mm thickness) images obtained from 61 subjects were retrospectively evaluated at level of carina bifurcation, using multi-detector CT (Brilliance 16, Philips Medical Systems). Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated at ascending aorta and infraspinatus muscle, from CT number and back-ground noise. Radiation dose from two protocols measured at 5-point using acrylic-phantom, and CT number and noise measured at 4-point using water-phantom. All statistical analysis were performed using SPSS 19.0 program. LDP images showed significantly more noise and a significantly lower SNR and CNR than did SDP images at ascending aorta and infraspinatus muscle. Noise, SNR and CNR were significantly correlated with body mass index (p<0.001). Radiation dose, SNR and CNR from phantom were significant differences between two protocols. LDP showed a significant reduction of radiation dose with a significant change in SNR and CNR compared with SDP. Therefore, exposure dose on LDP in clinical applications needs resetting highly more considering image quality.

Hazards Caused by UV Rays of Xenon Light Based High Performance Solar Simulators

  • Dibowski, Gerd;Esser, Kai
    • Safety and Health at Work
    • /
    • v.8 no.3
    • /
    • pp.237-245
    • /
    • 2017
  • Background: Solar furnaces are used worldwide to conduct experiments to demonstrate the feasibility of solar-chemical processes with the aid of concentrated sunlight, or to qualify high temperature-resistant components. In recent years, high-flux solar simulators (HFSSs) based on short-arc xenon lamps are more frequently used. The emitted spectrum is very similar to natural sunlight but with dangerous portions of ultraviolet light as well. Due to special benefits of solar simulators the increase of construction activity for HFSS can be observed worldwide. Hence, it is quite important to protect employees against serious injuries caused by ultraviolet radiation (UVR) in a range of 100 nm to 400 nm. Methods: The UV measurements were made at the German Aerospace Center (DLR), Cologne and Paul-Scherrer-Institute (PSI), Switzerland, during normal operations of the HFSS, with a high-precision UV-A/B radiometer using different experiment setups at different power levels. Thus, the measurement results represent UV emissions which are typical when operating a HFSS. Therefore, the biological effects on people exposed to UVR was investigated systematically to identify the existing hazard potential. Results: It should be noted that the permissible workplace exposure limits for UV emissions significantly exceeded after a few seconds. One critical value was strongly exceeded by a factor of 770. Conclusion: The prevention of emissions must first and foremost be carried out by structural measures. Furthermore, unambiguous protocols have to be defined and compliance must be monitored. For short-term activities in the hazard area, measures for the protection of eyes and skin must be taken.

Characterization of X-ray Emitted in the Ion Implantation Process of Semiconductor Operations (반도체 제조 이온주입 공정의 이온 임플란타 장치에서 엑스레이 발생 특성)

  • Dong-Uk Park;Kyung Ehi Zoh;Soyeon Kim;Seunghee Lee;Eun Kyo Jeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.33 no.4
    • /
    • pp.439-446
    • /
    • 2023
  • Objectives: The aims of this study are to investigate how X-rays are emitted to surrounding parts during the ion implantation process, to analyze these emissions in relation to the properties of the ion implanter equipment, and to estimate the resulting exposure dose. Eight ion implanters equipped with high-voltage electrical systems were selected for this study. Methods: We monitored X-ray emissions at three locations outside of the ion implanters: the accelerator equipped with a high-voltage energy generator, the impurity ion source, and the beam line. We used a Personal Portable Dose Rate and Survey Meter to monitor real-time X-ray levels. The SX-2R probe, an X-ray Features probe designed for use with the RadiagemTM meter, was also utilized to monitor lower ranges of X-ray emissions. The counts per second (CPS) measured by the meter were estimated and then converted to a radiation dose (𝜇Sv/hr) based on a validated calibration graph between CPS and μGy/hr. Results: X-rays from seven ion implanters were consistently detected in high-voltage accelerator gaps, regardless of their proximity. X-rays specifically emanated from three ion implanters situated in the ion box gap and were also found in the beam lines of two ion implanters. The intensity of these X-rays did not show a clear pattern relative to the devices' age and electric properties, and notably, it decreased as the distance from the device increased. Conclusions: In conclusion, every gap, in which three components of the ion implanter devices were divided, was found to be insufficiently shielded against X-ray emissions, even though the exposure levels were not estimated to be higher than the threshold.

Study on the Assessment of Dose Equivalent due to the Inhalation of $^{222}Rn$ and Its Daughters in Indoor Air (실내 $^{222}Rn$$^{222}Rn$ 딸핵종에 의한 피폭선량 해석연구)

  • Jun, Jae-Shik;Chai, Ha-Seok;Yi, Chul-Young;Cho, Hyuck;Ha, Chung-Woo
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.1
    • /
    • pp.16-24
    • /
    • 1995
  • Assesment of dose equivalent given by inhaled $^{222}Rn$ and its progeny has been carried out based on the concentrations of $^{222}Rn$ and its daughters in indoor air, and equilibrium factor between them measured by charcoal canister method and alpha spectrometry. Assuming the occupancy factor to be 0.8, and breathing rate to be $0.75m^3\;h^{-1}$ for public and $1.2m^3\;h^{-1}$ for occupational exposure, respectively, the regional lung dose 대valent and the resulting annual effective dose equivalent due to the inhalation of $^{222}Rn$ and its daughters in indoor air were evaluated by use of three different lung models, namely, Jacobi-Eisfeld, James-Birchall and ICRP model.

  • PDF

A Method of Estimating Radionuclide Accumulation in Coolant Purification System (원자력발전소 냉각수 정화계통의 핵종누적량 예측기법)

  • Whang, Joo-Ho;Lee, Jae-Min
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.183-193
    • /
    • 1997
  • The amount and kinds of radionuclide contained in waste volume should be known to prepare for occupational exposure management, perform safety assessment and finally to license a repository. Although the volume of filters and resins are small, activities of them comprise most of the radioactivity that made during power generation. This study aims at developing a method of estimating the radionuclide accumulation at the filters and resins of coolant systems. In this study, accumulated amount of radionuclides is estimated by a computer program which makes use of instantaneous decontamination factor, DF, instead of average DF. A FORTRAN program was developed for the estimation. Data from in-plant source-term measurements at Rancho-Seco nuclear power plant in the United States are employed for verification of the estimating method. And experimental data are employed, too. The instantaneous-DF-method showed smaller error than the average-DF-method. Accumulated amount of radionuclides can be calculated with only the DF and the radionuclide concentration, which are measured periodically according to the operating guide. However, especially, when the operating condition of nuclear power plant changes rapidly, the measuring term of DF and radionuclide should be shortened to ensure the accurate estimation.

  • PDF