• Title/Summary/Keyword: occupant comfort

Search Result 49, Processing Time 0.024 seconds

Embossed Structural Skin for Tall Buildings

  • Song, Jin Young;Lee, Donghun;Erikson, James;Hao, Jianming;Wu, Teng;Kim, Bonghwan
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.1
    • /
    • pp.17-32
    • /
    • 2018
  • This paper explores the function of a structural skin with an embossed surface applicable to use for tall building structures. The major diagrid system with a secondary embossed surface structure provides an enhanced perimeter structural system by increasing tube section areas and reduces aerodynamic loads by disorienting major organized structure of winds. A parametric study used to investigate an optimized configuration of the embossed structure revealed that the embossed structure has a structural advantage in stiffening the structure, reducing lateral drift to 90% compared to a non-embossed diagrid baseline model, and results of wind load analysis using computational fluid dynamics, demonstrated the proposed embossed system can reduce. The resulting undulating embossed skin geometry presents both opportunities for incorporating versatile interior environments as well as unique challenges for daylighting and thermal control of the envelope. Solar and thermal control requires multiple daylighting solutions to address each local façade surface condition in order to reduce energy loads and meet occupant comfort standards. These findings illustrate that although more complex in geometry, architects and engineers can produce tall buildings that have less impact on our environment by utilizing structural forms that reduce structural steel needed for stiffening, thus reducing embodied $CO^2$, while positively affecting indoor quality and energy performance, all possible while creating a unique urban iconography derived from the performance of building skin.

Optimal Control Strategies for Energy Saving of Central Cooling System with Outdoor Air Temperature Changes (외기온도 변화특성을 고려한 중앙냉방시스템의 에너지 절감 최적제어에 관한 연구)

  • Park, Ki-Tae;Ahn, Byung-Cheon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.6
    • /
    • pp.4260-4266
    • /
    • 2015
  • In this study, the optimal control method for minimizing of energy consumption for central cooling system with proper occupant comfort level is researched by simulation. The optimal control method is that the optimal set temperatures such as the condenser water temperature, supply air temperature, and chilled water temperature with environment variable change such as outdoor air dry-bulb and wet-bulb temperatures are obtained by suggested optimal control algorithm with maximum and part building load. The TRNSYS program is used for system modeling and the control performances with the suggested optimal control method are compared with the existing control method of fixed set points. The suggested optimal control method shows better responses in energy consumption in comparison with existing control ones.

Multi-objective shape optimization of tall buildings considering profitability and multidirectional wind-induced accelerations using CFD, surrogates, and the reduced basis approach

  • Montoya, Miguel Cid;Nieto, Felix;Hernandez, Santiago
    • Wind and Structures
    • /
    • v.32 no.4
    • /
    • pp.355-369
    • /
    • 2021
  • Shape optimization of tall buildings is an efficient approach to mitigate wind-induced effects. Several studies have demonstrated the potential of shape modifications to improve the building's aerodynamic properties. On the other hand, it is well-known that the cross-section geometry has a direct impact in the floor area availability and subsequently in the building's profitability. Hence, it is of interest for the designers to find the balance between these two design criteria that may require contradictory design strategies. This study proposes a surrogate-based multi-objective optimization framework to tackle this design problem. Closed-form equations provided by the Eurocode are used to obtain the wind-induced responses for several wind directions, seeking to develop an industry-oriented approach. CFD-based surrogates emulate the aerodynamic response of the building cross-section, using as input parameters the cross-section geometry and the wind angle of attack. The definition of the building's modified plan shapes is done adopting the reduced basis approach, advancing the current strategies currently adopted in aerodynamic optimization of civil engineering structures. The multi-objective optimization problem is solved with both the classical weighted Sum Method and the Weighted Min-Max approach, which enables obtaining the complete Pareto front in both convex and non-convex regions. Two application examples are presented in this study to demonstrate the feasibility of the proposed strategy, which permits the identification of Pareto optima from which the designer can choose the most adequate design balancing profitability and occupant comfort.

Energy Modeling of a Supertall Building Using Simulated 600 m Weather File Data

  • Irani, Ali;Leung, Luke;Sedino, Marzia
    • International Journal of High-Rise Buildings
    • /
    • v.8 no.2
    • /
    • pp.101-106
    • /
    • 2019
  • Assessing the energy performance of supertall buildings often does not consider variations in energy consumption due to the change of environmental conditions such as temperature, pressure, and wind speed associated with differing elevations. Some modelers account for these changing conditions by using a conventional temperature lapse rate, but not many studies confirm to the appropriateness of applying it to tall buildings. This paper presents and discusses simulated annual energy consumption results from a 600 m tall skyscraper floor plate located in Dubai, UAE, assessed using ground level weather data, a conventional temperature lapse rate of $6.5^{\circ}C/km$, and more accurate simulated 600 m weather data. A typical office floorplate, with ASHRAE 90.1-2010 standards and systems applied, was evaluated using the EnergyPlus engine through the OpenStudio graphical user interface. The results presented in this paper indicate that by using ground level weather data, energy consumption at the top of the building can be overestimated by upwards of 4%. Furthermore, by only using a lapse rate, heating energy is overestimated by up to 96% due to local weather phenomenon such as temperature inversion, which can only be conveyed using simulated weather data. In addition, sizing and energy consumption of fans, which are dependent both on wind and atmospheric pressure, are not accurately captured using a temperature lapse rate. These results show that that it is important, with the ever increasing construction of supertall buildings, to be able to account for variations in climatic conditions along the height of the building. Adequately modeling these conditions using simulated weather data will help designers and engineers correctly size mechanical systems, potentially decreasing overall building energy consumption, and ensuring that these systems are able to provide the necessary indoor conditions to maintain occupant comfort levels.

A Study on the Proper Illuminance Considering the Task Amenity of the Occupant in the Office Space (사무공간의 재실자의 작업면 쾌적성을 고려한 적정조도 도출)

  • Kim, In-Hye;Kim, Sung-Kyung;Hong, Won-Hwa
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.3
    • /
    • pp.159-167
    • /
    • 2020
  • For modern people who spend most of their time indoors, the indoor environment is very important. The efficiency of work depends on the amenity level of the occupants who use the office space. Therefore, the experiment was conducted to derive the proper illuminance according to the amenity level of the occupants. The experiment was conducted in an office in Chilgok County for 6 days. The illuminance of the indoor was changed every day, the feeling brightness of the occupants was measured every 10 minutes, the eye fatigue was measured every 30 minutes, and the overall illuminance and the work surface illuminance were measured every hour. Experimental results show that the feeling brightness is different depending on the position of the occupants. Also, it was found that the brightness survey preferred by the occupants required more proper illuminance than the brightness. In addition, it is considered that there is a correlation with indoor temperature and humidity as the eye fatigue of occupants. Brightness preference by time of day was analysis from feeling brightness of occupants and preference brightness of occupants, and then it was analyzed like eye fatigue to derive proper illuminance per hour. Based on these results, it can be utilized for improvement of eye amenity existing office space.

VSimulators: A New UK-based Immersive Experimental Facility for Studying Occupant Response to Wind-induced Motion of Tall Buildings

  • Antony Darby;James Brownjohn;Erfan Shahabpoor;Kaveh Heshmati
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.347-362
    • /
    • 2022
  • Current vibration serviceability assessment criteria for wind-induced vibrations in tall buildings are based largely on human 'perception' thresholds which are shown not to be directly translatable to human 'acceptability' of vibrations. There is also a considerable debate about both the metrics and criteria for vibration acceptability, such as frequency of occurrence or peak vs mean vibration, and how these might vary with the nature of the vibration. Furthermore, the design criteria are necessarily simplified for ease of application so cannot account for a range of environmental, situational and human factors that may enhance or diminish the impact of vibrations on serviceability. The dual-site VSimulators facility was created specifically to provide an experimental platform to address gaps in understanding of human response to building vibration. This paper considers how VSimulators can be used to inform general design guidance and support design of specific buildings for habitability, in terms of vibration, which allow engineers and clients to make informed decisions with regard to sustainable design, in terms of energy and financial cost. This paper first provides a brief overview of current vibration serviceability assessment guidelines, and the current understanding and limitations of occupants' acceptability of wind-induced motion in tall buildings. It then describes how the dual-site VSimulators facility at the Universities of Bath and Exeter can be used to assess the effects of motion and environment on human comfort, wellbeing and productivity with examples of how the facility capabilities have been used to provide new, human experience based experimental research approaches.

A Multi-Level Digital Twin for Optimising Demand Response at the Local Level without Compromising the Well-being of Consumers

  • Byrne, Niall;Chassiakos, Athanassios;Karatzas, Stylianos;Sweeney, David;Lazari, Vassiliki;Karameros, Anastasios;Tardioli, Giovanni;Cabrera, Adalberto Guerra
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.408-417
    • /
    • 2022
  • Although traditionally perceived as being a visualization and asset management resource, the relatively rapid rate of improvement of computing power, coupled with the proliferation of cloud and edge computing and the IoT has seen the expanded functionality of modern Digital Twins (DTs). These technologies, when applied to buildings, are now providing users with the ability to analyse and predict their energy consumption, implement building controls and identify faults quickly and efficiently, while preserving acceptable comfort and well-being levels. Furthermore, when these building DTs are linked together to form a community DT, entirely new and novel energy management techniques, such as demand side management, demand response, flexibility and local energy markets can be unlocked and analysed in detail, creating circularity in the economy and making ordinary building occupants active participants in the energy market. Through the EU Horizon 2020 funded TwinERGY project, three different levels of DT (consumer - building - community) are being created to support the creation of local energy markets while optimising building performance for real-time occupant preferences and requirements for their building and community. The aim of this research work is to demonstrate the development of this new, interrelated, multi-level DT that can be used as a decision-making tool, helping to determine optimal scenarios simultaneously at consumer, building and community level, while enhancing and successfully supporting the community's management plan implementation.

  • PDF

An Experiment of Discomfort Glare from Non-uniform Glare Source (불균일한 휘도를 갖는 창면의 불쾌글레어 평가실험)

  • Shin, Ju-Young;Kim, Jeong-Tai;Kim, Won-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.1-9
    • /
    • 2009
  • Impact of daylighting on the visual environment can improve occupant's well-being by providing visual comfort. Also, daylighting can save energy. However, glare from window can be a direct hazard to vision and can cause serious discomfort. Selecting glare source on a window plane is very important for evaluating discomfort glare from windows. But former glare indices can not identify the range of the glare source properly. In this study, difference in glare sensation with uniform and non-uniform glare sources are evaluated to identify the range of the glare source. The glare source was assumed as $120{\times}120[cm]$ window model. The window was divided into three parts with different luminance values. The experiment was conducted under 1[m], 1.5[m], 3[m] distance from the glare source. Two results were obtained from the experiments. First, the degree of discomfort glare increased as average window luminance increased. Second, the middle and lower part of the window plane can affect evaluation of discomfort glare as well as the upper part of the window plan. These results can be used for selecting the glare source in a window with non-uniform luminance.

Effect of Thermal Environment and Illuminance on the Occupants Works based on the Electroencephalogram and Electrocardiogram Analysis (뇌파와 심전도 분석을 기반으로 한 온열환경 및 조도가 재실자의 업무에 미치는 영향)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.95-106
    • /
    • 2014
  • This research analyzed biosignals associated with the change of emotion from lighting felt by the occupants and task type under various indoor thermal environments and illuminance, and examined the biosignals' impacts on work. To this end, the indoor thermal environment was constructed on the basis of PMV (predicted mean vote) index value, and various indoor environments were created by changing the brightness of LED stands. In this manner, a variety of indoor environments were constructed, and experiments were carried out. This research evaluates the sensibility response to lighting through a questionnaire survey in the given environment and incorporates different types of error searches. In this way, changes were analyzed by measuring electroencephalogram (EEG) and electrocardiograms (ECG). As a result, all biosignals on the task type showed significant differences from the thermal environment change. When PMV index value was 0.8 (temperature: $25^{\circ}C$, humidity: 50 %), concentration and attention were the most activated. However, the biosignals did not show significant differences from the illuminance change. Concentration on an occupant's work capability was confirmed to be closely related to the thermal environment. As for the subjective emotional response to lighting, the occupants felt comfort as illuminance was lower, while they felt discomfort as illuminance was higher. However, there were no significant differences from the thermal environment change.