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Abstract: Although traditionally perceived as being a visualization and asset management 

resource, the relatively rapid rate of improvement of computing power, coupled with the 

proliferation of cloud and edge computing and the IoT has seen the expanded functionality of 

modern Digital Twins (DTs). These technologies, when applied to buildings, are now providing 

users with the ability to analyse and predict their energy consumption, implement building controls 

and identify faults quickly and efficiently, while preserving acceptable comfort and well-being 

levels. Furthermore, when these building DTs are linked together to form a community DT, entirely 

new and novel energy management techniques, such as demand side management, demand 

response, flexibility and local energy markets can be unlocked and analysed in detail, creating 

circularity in the economy and making ordinary building occupants active participants in the energy 

market. Through the EU Horizon 2020 funded TwinERGY project, three different levels of DT 

(consumer – building – community) are being created to support the creation of local energy 

markets while optimising building performance for real-time occupant preferences and 

requirements for their building and community. The aim of this research work is to demonstrate 

the development of this new, interrelated, multi-level DT that can be used as a decision-making 

tool, helping to determine optimal scenarios simultaneously at consumer, building and community 

level, while enhancing and successfully supporting the community’s management plan 

implementation. 

 

Key words:  Digital Twins, Flexibility, Demand-Response, Energy consumption, Building, 

Community  

1. INTRODUCTION 

The digitization of the built environment is becoming increasingly relevant amongst academics 

and building operators alike as the potential role of Digital Twins (DT) in assisting with the 

decarbonization of the world’s buildings. Buildings are currently responsible for 40% of global 

energy consumption and 33% of greenhouse gas emissions  and are currently the focus of many 

governments and organizations efforts towards reducing their carbon footprint [1]. A Digital Twin 
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(DT) is a virtual representation of a physical, real-world asset or group of assets [2]. DTs have the 

capability to enable building occupants and managers to deeply interrogate the performance of their 

buildings, forecast their energy consumption into the future, explore the impact of operational and 

capital improvements and derisk and predict the result of any deep retrofit structures [3]. Despite 

these benefits, the implementation of DTs, and in particular performance DTs (that facilitate the 

functionality outlined above in comparison to informational DTs such as BIM models) remain a 

fringe technology awaiting widespread deployment in the industry [4]. Furthermore, the application 

of digital tools and the creation of digital assets has not been effectively implemented in the 

residential market to date. As a result, residential buildings are not recognizing the potential of 

leveraging digital tools to enable them to decarbonize effectively. As of 2020, there are an 

estimated 195.4 million households in the European Union alone, a figure that increased by 7.2% 

over the previous decade [5].  The introduction of DTs for this level of building will provide all 

building occupants with the ability to track their energy usage, explore performance improvement 

strategies for their property and even actively engage in the market through engagement in 

community grid and demand response actions. Currently, many DTs of buildings, communities, 

grids and their assets primarily rely on static 3D models and data feeds from Building Energy 

Management Systems and SCADA (supervisory control and data acquisition)  models, for 

example, while any modelling occurs through the use of data-driven techniques such as Artificial 

Intelligence (AI)[6] . As a result, the relative intelligence that can be gleaned from such models can 

be somewhat limited and more suited to measurement and tracking of operational energy 

consumption while failing to unlock the true power of DT. When tools such as physics-based, 

dynamic simulation modelling (DSM) is integrated into the DT architecture, further capabilities 

can be unlocked that can empower building occupants, owners and managers to operate their 

buildings and communities in a more intelligent, energy efficient way [7]. 

Furthermore, the move towards decentralizing the energy grid is being supported through the 

development of demand response programs, although these are currently almost exclusively 

supplied to energy intensive industries such as paper, metal and cement production. Although 

commercial and industrial demand response is now considered technically and economically 

viable, residential resources are still not active participants in the market. Despite the slow rollout, 

residential buildings comprise a large source of flexible energy demand and storage. This flexibility 

could potentially provide distribution and transmission system operators with the needed services 

to balance demand and supply, defer grid investments and manage power quality. The net benefit 

of achieving basic market integration through demand response are in the range of 12.5 to 40 €bn/yr 

by 2030 [8].  

The EU funded TwinERGY [6] project  intends to introduce a first of its kind demand response 

framework that enables the realization of novel business models, allowing electricity retailers and 

local energy communities to participate in energy markets under the role of an aggregator and, in 

this way facilitate consumer representation in energy markets and flexibility transactions. Based on 

this work, the paper presents a novel Digital Twin architecture which integrates optimization 

algorithms and flexibility to achieved demand response. The main objective is through a multi layer 

Digital Twin, and the creation of different demand profiles at each level, to manage flrxibility and 

optimize  demand respone on consumer, building and community level. Flexibility is considered 

as the total calculated capacity of demand response for a set period. In practice, this is the total 

amount of demand that can be shifted over a given window of time, including all possible demand 

response actions at either the building or community scale. Furthermore, the predictive power of 

such tools enables the DT to conduct ‘what-if’ analyses to explore the impact of altering control 

strategies and assessing the impact of occupant behaviour, for example, allowing relevant 
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stakeholders to de-risk the operational alterations they make in order to reduce energy consumption 

in their buildings and within their communities.  

2. MULTI-LEVEL DIGITAL TWIN ARCHITECTURE 

The TwinERGY Digital Twin seeks to leverage the analytical capabilities of DT technology at 

three different scales, namely the individual consumer, the building level and the community level. 

The primary objective is the each stakeholder involved within the community ecosystem is twinned 

to facilitate the detailed analysis of data and prediction of energy use and behaviour at any energy 

level within the community. The DTs that will be created for the TwinERGY platform differ from 

traditional DT assets, which are typically informational or asset registry tools, as they are based on 

dynamic simulation models and leverage actual data regarding the behaviour of individual citizens, 

the energy consumption and production of the buildings and commuinbities to create fully 

calibrated DTs. These performance DTs, while based on physics based modelling principles are 

enhanced through ongoing calibration with near real-time data that is recorded from the actual 

buildings of which they are a representation. Based on this approach, the TwinERGY DT 

technology provides users and stakeholders with a cutting edge DT tool that can be used to support 

a whole range of energy reduction services, including but not limiting energy optimization, emergy 

consumption and flexibility forecasting, demand response engagement, maximization of RES 

(Rwnewable Energy Sources) uptake, minimization of energy costs and simulation based building 

control.  

As mentioned previously, TwinERGY seeks to create a three-leveled interconnected DT tool. 

The overacrching architecture for this technology is presented in Figure 1. As can be seen from the 

figure, the creation of the DTs is supported by the iSCAN database, which is used to store data 

collected from the consumers, buildings and community assets. This data is gathered through a 

network of IoT and other sensors and used to calibrate and validate the accuracy of the various 

DTs, ensuring that the virtual assets represent and predict actual behaviour and performance. 

iSCAN then acts as a data repository, facilitating the transfer of processed data between the 

different DT assets, as well as to a number of functional modules that will leverage the analytical 

output of the DTs to perform actionable analysis at the building and community levels. 

 

2.1. Consumer Digital Twin 

Adopting a bottom-up approach to the 

development and implementation of the DT 

platform, the Consumer Digital Twin 

(CDT) is used to virtually represent the 

behaviour and preferences of the individual 

building occupant. This particular element 

of the TwinERGY DT architecture will 

leverage the individual’s physiological 

data, that will is collected through a novel, 

wrist-mounted wearable device, as well as 

other ambient environmental data that is 

collected through a network of IoT and 

other sensors located within their building. 

The CDT will leverage this data, which is 

supplemented by the collection of qualitative user behaviour metrics and preferences to create 

dynamic constructs of prosumer energy behaviours, while also establishing consumer preferences 

 

  Figure 1. TwinERGY DT Architecture. 
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with respect to energy usage and openness to engaging in flexibility and demand response actions. 

With this in mind, the CDT will function as the central element that will facilitate the employment 

of human-centric demand response optimization strategies, enabling personalized control functions 

and automation in a non-intrusive manner and without compromising the occupant’s comfort, 

indoor environmental quality or daily operations / schedules for the provision of the required 

amount of flexibility to aggregators. Furthermore, the CDT will ensure the improvement of demand 

forecasting at the short and medium intervals through the utilization of the actual data from the 

building and community to unlock more reliable forecasting of future states of the distribution grid, 

providing aggregators with improved decision-making metrics and minimizing the potential for 

DR (Demand Response) strategy overrides that could be initiated by the building occupant and 

may lead to destabilisation of the grid. The key output of the CDT within the current TwinERGY 

architecture will be the occupant’s preferences regarding participation in demand response actions 

(acceptance rate) as well as with respect to their comfort preferences. This data will be returned to 

a dedicated channel within iSCAN and made available to both the Building Digital Twin (BDT) 

and the Community Digital Twin (CommDT). 

2.2. Building Digital Twin 

The BDT will be created using the IES Virtual Environment and iCL tools, which currently 

comprise the market leading performance digital twin platform in use. The TwinERGY project will 

leverage the BDT as the central digital asset in providing analytical input and forecasting functions 

to optimize building energy consumption and comfort conditions, predict and forecast energy 

consumption based on past performance and predicted weather conditions and user preferences and 

provide analytical and data processing support to other use-cases that are being provided to 

customers through the TwinERGY platform. 

In support of these goals, the TwinERGY BDT is being developed in two distinct but inter-

related phases. Initially, a physics based, dynamic simulation model of each of the buildings within 

the pilot sites is being developed using static information, such as information regarding the 

components, equipment and systems within each of the residential buildings participating in the 

project. Once created, these models will then be calibrated using time-series data that is collected 

from the buildings through the use of the IoT sensors and meters or otherwise. In addition, actual 

weather conditions from the site is used to ensure that the model is accurately representing the true 

performance of the actual building. Once fully calibrated, the BDT is then considered to be the 

BDT and will be used for optimization, scenario testing and forecasting of future performance. This 

process is supplemented by the output of the CDT to ensure that the occupant preferences and 

behaviour are accounted for, as well as their willingness to participate in demand response 

activities. In addition, local energy generation associated with renewable energy sources that are 

located on the building, such as PV panels, will be forecasted by the BDT. 

The key output of the BDT within the TwinERGY architecture is a time-series energy demand 

profile for each individual building based on the forecasted weather conditions for at least one day 

ahead. Through the testing period for the tool, the accuracy and practicality of forecasting up to 

five days into the future will be explored to determine the most accurate prediction period. The 

demand profile defined through the BDT will be optimized through a dedicated optimization 

algorithm. The objective function of this algorithm, which represents the parameter for which the 

profile is being optimized, will be implemented using the preferences from the CDT Similarly the 

constraints will be defined through the CDT but also through the performance metrics of the 

components and equipment within the building. For example, if the building occupant defines their 

preference to be the minimization of energy cost, they have a acceptance rate of 50% (meaning that 

they are willing to engage in demand response actions some of the time) and they have a 2kW PV 
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installation on their building, the algorithm will function to optimize the demand profile to 

minimum energy cost, while considering the other constraints on the system. The optimized 

demand profile will then be returned to iSCAN for use by the CommDT and other services within 

the TwinERGY platform. 

2.3. Community Digital Twin 

The CommDT will function to aggregate the demand profiles from each of the BDT to provide 

a single-pane-of-glass view of the entire community. Further to the building level data, community 

scale renewable and storage assets, as well as electric vehicles and charging stations will be 

integrated within the CommDT to accurately represent all energy consuming producing and storage 

assets within the community. A screenshot of the CommDT of the Hagedorn Community, the 

German the demonstration site, is presented in Figure 2. As can be seen from the image, each of 

the buildings within the community are represented on the screenshot, with each of these individual 

buildings also being connected to its BDT, ensuring that the community grid aggregator has a full 

representation of the entire community. Furthermore, the characteristics of each individual building 

can be interrogated to identify the buildings that are consuming most energy, producing the highest 

level of renewable energy or are 

most involved in demand 

response actions in the 

community.  

The CommDT builds on the 

analytics and forecasted energy 

demand from the BDT to provide 

the functionality to analyse the 

potential for flexibility and 

demand response actions at the 

community scale, providing a 

detailed grid level view of the 

energy flows within the community network and presenting the community grid operator with the 

ability and functionality to implement optimization exercises at the grid level. Through the use of 

optimization algorithms, the CommDT will identify the most appropriate manner in which the 

forecasted energy demand can be satisfied, based on the level of generation at the community level. 

The grid view functionality of the CommDT is represented in Figure 3. 

 Following the completion of the 

optimization process at the 

community scale, a set of time-

series demand forecasts will be 

defined for at least one day ahead. 

These profiles, as well as the 

forecasted renewable energy 

forecasts will be returned to the 

iSCAN platform and made 

available to the other TwinERGY 

service providers who will then 

perform a range of alternative 

actions, including dispatch of the 

energy at the community level.  

 
 Figure 2. CommDT of the Hagedorn demonstration site. 

 
Figure 3.  Mock-up of the Grid View functionality 

provided by the CommDT 
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3. FlEXIBILITY AND DEMAND RESPONSE 

The forecasting and analytical functionality provided by the TwinERGY DT platform are a 

crucial component in supporting the implementation of demand response and flexibility algorithms 

to empower communities to maximize their use of locally generated renewable energy 

independently of the centralized energy grid. By doing so, communities can not only reduce their 

carbon footprint and energy cost, but can increase their resiliency to power outages caused for 

example by increasingly frequent extreme weather events associated with climate change , while 

also reducing their exposure to increasing energy costs, which will likely have a significant impact 

on European residents over the coming years [9] [10] [11].  

The optimization algorithms utilized in the TwinERGY project are based on the PyGMO library, 

which is an optimization engine that facilitated multi-objective problem solving [12]. The 

algorithm is applied to the initial time-series energy demand data that is computed by the DT. Each 

scale of DT plays an important role in this process, with different inputs, constraints and objective 

parameters being defined across the entire DT platform. For example, the CDT will define the user 

preferences with respect to comfort conditions and energy/cost minimization, demand response 

acceptance level and whether an appliance or load is flexible or non-flexible. The BDT will then 

develop an initial forecasted energy demand profile based on the next day’s weather forecast, as 

well as the architecture of the building and the performance characteristics of the building’s systems 

and equipment. This profile will then be the main input to the optimization algorithm, which will 

optimize the time-series demand profile with respect to the user preferences, providing an updated, 

optimized day-ahead aggregated demand profile for the building. A similar process will occur at 

the community level, where the community grid energy flows will be optimized based on 

renewable production and other functions. 

As the development of the DT platform remains in progress, the demand response and flexibility 

algorithms that are to be implemented on the TwinERGY platform have been tested and validated 

using synthetic time-series data obtained from the open source, StROBe library [13] . Initially, a 

household comprising three occupants with five flexible and one inflexible load were defined. The 

flexible loads comprised a dish washer, washing machine, oven and dryer while an iron was 

presented as an in-flexible loads. The duty-cycles and an acceptable load shifting time period were 

defined, as well as the number of times the appliance would be used and are presented in Table 1. 

Table 1. Appliance Characteristics for Optimization 

Appliance Name 
Duty Cycle 

(minutes / job) 
Flexible (Y/N) 

Potential to 

Shift (minutes) 
# of Jobs 

Dish Washer 77 Y 480 1 

Washing machine 144 Y 300 2 

Oven 25 Y 60 1 

Dryer 214 Y 360 2 

Iron 10 N - 1 

 

In addition to the appliance characteristics, a variable pricing structure was imported into the 

algorithm, with the objective function in this case being the minimization of energy cost. Figure 4 

presents the outcome of the validation of this algorithm, with the solid blue line in the figure 

representing the dynamic energy pricing. The solid red line represents the base case scenario prior 

to the implementation of the optimization. As can be seen from the chart, there are two durations 

in which the majority of electrical consumption occurs corresponding with the times between 
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approximately 07:00 and 13:00 and again between approximately 16:00 and 19:00, which is to be 

expected based on the typical occupancy times of residential buildings. 

 

 

 
 

Figure 4.  Demand shifting of 

appliances to minimize energy cost. 

 

Figure 5.  Building performance in terms of air 

temperature and electricity consumption following 

optimization. 

Moreover, the evening peak corresponds to a time of increased energy costs, meaning that the 

cost of this energy demand will be higher than the corresponding time in the morning. The baseline 

energy cost for the operation of appliances in this building for the time period indicated is calculated 

as approximately £0.77. In order to optimize the energy cost in the building, the flexibility 

characteristics of each appliance was used as an input to the optimization algorithm along and an 

updated demand profile was computed for each appliance. This updated profile is represented by 

the dashed red line in Figure 4. As can be seen from the chart, the energy demand occurring at the 

time of increased energy cost rate is minimized through demand shifting, with the majority of the 

demand at this time shifted to times of lower rates, leading to an energy cost during this period of 

£0.55, corresponding to a 28% decrease in energy cost through the shifting of load alone. By 

leveraging the analytical and energy forecasting capabilities of the TwinERGY DT platform, 

optimized appliance scheduling can be implemented in buildings, enabling occupants to decrease 

their energy bills through leveraging low-cost energy to complete their flexible loads. 

The benefit of demand response is not limited to the load shifting of appliances, however, with 

the use of DTs providing higher resolution insights into building operations, as well as internal 

environmental conditions. Based on this functionality, optimal HVAC operation can be explored 

to enable building occupants to reduce their energy consumption while maintaining appropriate 

thermal comfort conditions. Figure 5 presents the variation in energy consumption and indoor air 

temperature in the building following its optimization and the implementation of demand response 

actions. As can be seen, the air temperature setpoint, which is represented by the green line, varies 

significantly more than shown in the baseline condition. Considering the time period before 09:00 

on the chart, it can be seen that the heating setpoint begins to change from approximately 03:00 as 

the air temperature falls below the lower comfort limit. As the energy cost begins to decrease, the 

demand increases as the algorithm begins to attempt to increase the air temperature in line with the 

comfort conditions. As the day progresses, the algorithm, continues to dynamically change the 

heating set point based on the indoor air temperature and the comfort preferences of the user. As 

the energy cost begins to increase at approximately 15:00, however, the air temperature begins to 

decrease as the algorithm starts to reduce the set point in response to the increasing tariffs. This 
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continues until the reduced tariff commences shortly after 18:00, while the temperature is allowed 

to decay down for the evening, remaining within the comfort preferences of the occupant while 

also reducing energy consumption inversely with the rising energy cost. One final point of note is 

that the appliances have been shifted here again to less expensive time periods to further reduce 

energy cost. Based on this analysis, the energy cost for the day is £0.92, a 25% reduction on the 

baseline. 

The previous use case have assumed that the acceptance rate for demand response actions will 

be 100%, meaning that the occupant is completely open and willing to implement all demand 

response actions in their building, an assumption that is typically limited to explicit demand 

response action and is unlikely to be practical in real residential buildings. As mentioned 

previously, the CDT plays a key role in defining user preferences, as well as identifying the user’s 

acceptance rate as well as their individual taxonomy of flexible loads. This plays a key role in 

enabling the BDT to forecast energy demand appropriately while also providing constraints to the 

optimization algorithms.  

Figure 6 presents the results of an analysis of the various acceptance criteria within a community 

of 39 semi-detached residential homes each with their own solar PV array (4kWp) and demand 

profiles as described previously. Leveraging the IES DT tools, demand profiles over the course of 

a single day were calculated for each building and then aggregated across the community. This 

community demand profile then underwent a multi-criteria optimization against energy cost, 

renewable generation usage and diversity factor, with the simulation being repeated for four distinct 

demand response acceptance rates (25%, 50%, 74% and 100%). The base case is represented by an 

acceptance rate of 0%. 

As is clear from the chart and as expected, the higher the level of acceptance towards 

participating in demand response actions, the smoother and less variable the demand profile. This 

is most obvious when comparing the green (base case, or 0% acceptance) and red plots (100% 

acceptance). The unoptimized green profile is consuming the highest proportion of power in the 

 

Figure 6.  Different acceptance criteria at the community level. 
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evening, when the renewable energy is unavailable and the time-of-use cost is highest. Compare 

this then to the most optimal red profile, which peaks during the time of maximum renewable 

energy generation, when the time-of-use cost is not at a peak and is also the most consistent across 

the day. It should be noted, however, that this level of acceptance is not necessarily viable for all 

users, as certain users will not be home during that time of the day, and other preferences will be 

provided by the consumer digital twin, which will define further constraints, however it is important 

to note that at this point, prior to the availability of real world data from the pilot sites, the algorithm 

is performing as expected with increasing acceptance rates of demand response actions 

corresponding to more optimal demand profiles compared to the base case scenario. 

4. CONCLUSIONS AND FUTURE WORK 

This paper has presented an overview of the progress to date in the development of the 

TwinERGY DT platform and associated flexibility and demand response algorithms. Based on the 

research to date, it can be concluded that the forecasting and prediction functionality of DTs provide 

a building occupants and managers with a key digital asset to assist in the reduction of energy 

consumption in their building, particularly when used in conjunction with the flexibility 

optimization algorithms described within this paper at both the building and community level. This 

has the potential to create a step change move towards decarbonization and facilitate the 

proliferation of community grids across the EU, thus reducing the dependency of the residential 

market on the central grid and providing resiliency in the face of increasing grid stability and rising 

energy costs. This impact will have on the normal building occupant cannot be understated.Testing 

and validation of the algorithms, particularly under other objective functions will continue while 

the DT platform is developed, allowing quick adaption and implementation of the algorithms to the 

DT platform once ready. This process is ongoing as static data is provided by each of the 

demonstration sites participating in the project. It is intended that the algorithms developed through 

the project will be incorporated into the DT platform to create a single tool that can be used to 

analyse and implement demand response actions at the building and community level. 
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