A Multi-Level Digital Twin for Optimising Demand Response at the Local Level without Compromising the Well-being of Consumers

  • Published : 2022.06.20

Abstract

Although traditionally perceived as being a visualization and asset management resource, the relatively rapid rate of improvement of computing power, coupled with the proliferation of cloud and edge computing and the IoT has seen the expanded functionality of modern Digital Twins (DTs). These technologies, when applied to buildings, are now providing users with the ability to analyse and predict their energy consumption, implement building controls and identify faults quickly and efficiently, while preserving acceptable comfort and well-being levels. Furthermore, when these building DTs are linked together to form a community DT, entirely new and novel energy management techniques, such as demand side management, demand response, flexibility and local energy markets can be unlocked and analysed in detail, creating circularity in the economy and making ordinary building occupants active participants in the energy market. Through the EU Horizon 2020 funded TwinERGY project, three different levels of DT (consumer - building - community) are being created to support the creation of local energy markets while optimising building performance for real-time occupant preferences and requirements for their building and community. The aim of this research work is to demonstrate the development of this new, interrelated, multi-level DT that can be used as a decision-making tool, helping to determine optimal scenarios simultaneously at consumer, building and community level, while enhancing and successfully supporting the community's management plan implementation.

Keywords

Acknowledgement

This research is financed by the European Union through the HORIZON 2020 Programme in the context of the project "Intelligent interconnection of prosumers in positive energy communities with twins of things for digital energy markets- TWINERGY", with Grant Agreement ID: 957736