• Title/Summary/Keyword: observation model

Search Result 2,361, Processing Time 0.03 seconds

A study of artificial neural network for in-situ air temperature mapping using satellite data in urban area (위성 정보를 활용한 도심 지역 기온자료 지도화를 위한 인공신경망 적용 연구)

  • Jeon, Hyunho;Jeong, Jaehwan;Cho, Seongkeun;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.11
    • /
    • pp.855-863
    • /
    • 2022
  • In this study, the Artificial Neural Network (ANN) was used to mapping air temperature in Seoul. MODerate resolution Imaging Spectroradiomter (MODIS) data was used as auxiliary data for mapping. For the ANN network topology optimizing, scatterplots and statistical analysis were conducted, and input-data was classified and combined that highly correlated data which surface temperature, Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), time (satellite observation time, Day of year), location (latitude, hardness), and data quality (cloudness). When machine learning was conducted only with data with a high correlation with air temperature, the average values of correlation coefficient (r) and Root Mean Squared Error (RMSE) were 0.967 and 2.708℃. In addition, the performance improved as other data were added, and when all data were utilized the average values of r and RMSE were 0.9840 and 1.883℃, which showed the best performance. In the Seoul air temperature map by the ANN model, the air temperature was appropriately calculated for each pixels topographic characteristics, and it will be possible to analyze the air temperature distribution in city-level and national-level by expanding research areas and diversifying satellite data.

Three-Dimensional Culture of Thymic Epithelial Cells Using Porous PCL/PLGAComposite Polymeric Scaffolds Coated with Polydopamine (폴리도파민으로 코팅된 다공성 PCL/PLGA 복합 폴리머 지지체를 이용한 흉선상피세포의 3차원 세포배양)

  • Seung Mi Choi;Do Young Lee;Yeseon Lim;Seonyeong Hwang;Won Hoon Song;Young Hun Jeong;Sik Yoon
    • Journal of Life Science
    • /
    • v.33 no.8
    • /
    • pp.612-622
    • /
    • 2023
  • T-cell deficiency may occur in various clinical conditions including congenital defects, cell/organ transplantation, HIV infection and aging. In this regard, the development of artificial thymus has recently been attracting much attention. To achieve this aim, the development of techniques for 3D culture of thymic stromal cells is necessary because thymocytes grown only in a 3D thymic microenvironment can be differentiated fully to become mature, immunocompetent T cells; the same cannot be achieved for thymocytes grown in 2D. This study aimed to develop a nanotechnology-based 3D culture technique using polymeric scaffolds for thymic epithelial cells (TECs), the main component of thymic stromal cells. Scanning electron microscopic observation revealed that the pores of both PCL and PCL/PLGA scaffolds were filled with TECs. Interestingly, TECs grown in 3D on polydopamine-coated scaffolds exhibited enhanced cell attachment and proliferation compared to those grown on non-coated scaffolds. In addition, the gene expression of thymopoietic factors was upregulated in TECs cultured in 3D on polydopamine-coated scaffolds compared to those cultured in 2D. Taken together, the results of the present study demonstrate an efficient 3D culture model for TECs using polymeric scaffolds and provide new insights into a novel platform technology that can be applied to develop functional, biocompatible scaffolds for the 3D culture of thymocytes. This will eventually shed light on techniques for the in vitro development of T cells as well as the synthesis of artificial thymus.

Implementation of Semi-infinite Boundary Condition for Dynamic Finite Element Analysis (동적 유한요소해석에서의 반무한 경계조건의 실행)

  • Choi, Chang-Ho;Chung, Ha-Ik
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.9
    • /
    • pp.37-43
    • /
    • 2006
  • Dynamic numerical analysis of geotechnical problems requires a way to simulate the decrease of energy as the domain of interest gets larger. This phenomenon is usually referred to as radiation damping or geometric attenuation and it is distinguished from material damping in which elastic energy is actually dissipated by viscous, hysteretic, or other mechanism. The fact that the domain of analysis in numerical modeling must be chosen, however, causes a need for special attention at the boundary. This observation leads directly to the idea of determining the dynamic response of the interior region from a finite model consisting of the interior region subjected to a boundary condition which ensures that all energy arriving at the boundary is absorbed. This paper presents a simple methodology to simulate transmitting boundaries condition using viscoelastic infinite elements within the recently developed "OpenSees" finite element code. The methodology used here provides that the level of absorption for traveling waves is efficient enough for practical purposes, but unsatisfactory for the case of sharp incident angles. The effectiveness of the infinite elements for the absorption of incident waves at boundaries is evaluated via example analysis.

Development of Field Trip Program for Hantan River Geopark in Pocheon (포천 한탄강 지질공원에 대한 야외학습 프로그램 개발)

  • Jae-Yeon Kim;Jae-Hee Cho;Hak-Sung Kim
    • Journal of Science Education
    • /
    • v.46 no.2
    • /
    • pp.165-177
    • /
    • 2022
  • This study aims to develop a field trip program for the Hantan River geopark in Pocheon using Orion's field trip model. The selected learning sites were the Hwajeogyeon and Bidulginang Falls, famous geosites of the Hantan River geopark in Pocheon. The field trip program consisted of six preparatory units, two field trip units, and two summary units. The preparatory stage helped reduce the novelty space considering cognitive, psychological, and geographical factors. In the field trip stage, students acquire concepts linked to learning elements in the curriculum scientifically and encourage interest in science. In the summary stage, students organized the geological phenomena observed in the field and inferred the vicinity of the Pocheon Hantan River region. The field trip program was modified to give enough time for observation activities to increase students' interest in science and to connect concepts with learning elements in the curriculum in the outdoor learning phase to allow students' convergent thinking. Implementing the field trip program raises students' interest and attitude in science.

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

Categorization of UX method based on UX expert's competence model (UX 전문가의 역량 모델에 기반한 수행역량유사도에 따른 UX 방법론 분류에 대한 연구)

  • Lee, Ahreum;Kang, Hyo Jin;Kwon, Gyu Hyun
    • Design Convergence Study
    • /
    • v.16 no.4
    • /
    • pp.1-16
    • /
    • 2017
  • As the local manufacturing industry has entered a phase of stagnation, service and product design based on user experience has been highlighted as an alternative for the innovation. However, SMEs(Small and Medium-sized Enterprises) are still struggling to overcome the current crisis. One of the reasons is that SMEs do not have enough contact points with the validated UX firms and experts. Thus, SMEs has a high barrier to invest in new opportunity area, user experience. In this study, we aim to figure out UX experts' competence to perform the UX method to solve the UX problems based on the KSA framework(Knowledge, Skill, Attitude). Based on the literature review and expert workshop, we grouped the UX method according to the similarity of the competence required to conduct the method. With cluster analysis, 5 different groups of UX method were defined based on the competence, Panoramic Analysis, Meticulous Observation and Analysis, Intuitive Interpretation, Agile Visualization, and Logical Inspection. The results would be applied to compose a portfolio of UX experts and to implement a mechanism that could recommend the professional experts to the company.

Homogenization of Plastic Behavior of Metallic Particle/Epoxy Composite Adhesive for Cold Spray Deposition (저온 분사 공정을 위한 금속입자/에폭시 복합재료 접착제의 소성 거동의 균질화 기법 연구)

  • Yong-Jun Cho;Jae-An Jeon;Kinal Kim;Po-Lun Feng;Steven Nutt;Sang-Eui Lee
    • Composites Research
    • /
    • v.36 no.3
    • /
    • pp.199-204
    • /
    • 2023
  • A combination of a metallic mesh and an adhesive layer of metallic particle/epoxy composite was introduced as an intermediate layer to enhance the adhesion between cold-sprayed particles and fiber-reinforced composites (FRCs). Aluminum was considered for both the metallic particles in the adhesive and the metallic mesh. To predict the mechanical characteristics of the intermediate bond layer under a high strain rate, the properties of the adhesive layer needed to be calculated or measured. Therefore, in this study, the Al particle/epoxy adhesive was homogenized by using a rule of mixture. To verify the homogenization, the penetration depth, and the thickness decrease after the cold spray deposition from the undeformed surface, was monitored with FE analysis and compared with experimental observation. The comparison displayed that the penetration depth was comparable to the diameters of one cold spray particle, and thus the homogenization approach can be reasonable for the prediction of the stress level of particulate polymer composite interlayer under a high strain rate for cold spray processing.

Analysis of Infiltration Route using Optimal Path Finding Methods and Geospatial Information (지형공간정보 및 최적탐색기법을 이용한 최적침투경로 분석)

  • Bang, Soo Nam;Heo, Joon;Sohn, Hong Gyoo;Lee, Yong Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1D
    • /
    • pp.195-202
    • /
    • 2006
  • The infiltration route analysis is a military application using geospatial information technology. The result of the analysis would present vulnerable routes for potential enemy infiltration. In order to find the susceptible routes, optimal path search algorithms (Dijkstra's and $A^*$) were used to minimize the cost function, summation of detection probability. The cost function was produced by capability of TOD (Thermal Observation Device), results of viewshed analysis using DEM (Digital Elevation Model) and two related geospatial information coverages (obstacle and vegetation) extracted from VITD (Vector product Interim Terrain Data). With respect to 50m by 50m cells, the individual cost was computed and recorded, and then the optimal infiltration routes was found while minimizing summation of the costs on the routes. The proposed algorithm was experimented in Daejeon region in South Korea. The test results show that Dijkstra's and $A^*$ algorithms do not present significant differences, but A* algorithm shows a better efficiency. This application can be used for both infiltration and surveillance. Using simulation of moving TOD, the most vulnerable routes can be detected for infiltration purpose. On the other hands, it can be inversely used for selection of the best locations of TOD. This is an example of powerful geospatial solution for military application.

Prediction of Crack Distribution for the Deck and Girder of Single-Span and Multi-Span PSC-I Bridges (단경간 및 다경간 PSC-I 교량의 바닥판 및 거더의 균열분포 예측)

  • Hyun-Jin Jung;Hyojoon An;Jaehwan Kim;Kitae Park;Jong-Han Lee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.6
    • /
    • pp.102-110
    • /
    • 2023
  • PSC-I girder bridges constitute the largest proportion among highway bridges in Korea. According to the precision safety diagnosis data for the past 10 years, approximately 41.3% of the PSC-I bridges have been graded as C. Furthermore, with the increase in the aging of bridges, preemptive management is becoming more important. Damage and deterioration to the deck and girder with a long replacement cylce can have considerable impacts on the service and deterioration of a bridge. In addition, the high rate of device damages, including expansion joints and bearings, necessitates an investigation into the influence of the device damage in the structural members of the bridge. Therefore, this study defined representative PSC-I girder bridges with single and multiple spans to evaluate heterogeneous damages that incorporate the damage of the bridge member and device with the deterioration of the deck. The heterogeneous damages increased a crack area ratio compared to the individual single damage. For the single-span bridge, the occurrence of bearing damage leads to the spread of crack distribution in the girder, and in the case of multi-span bridges, expansion joint damage leads to the spread of crack distribution in the deck. The research underscores that bridge devices, when damaged, can cause subsequent secondary damage due to improper repair and replacement, which emphasizes the need for continuous observation and responsive action to the damages of the main devices.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.