• Title/Summary/Keyword: objective parameters

Search Result 3,099, Processing Time 0.03 seconds

The Applicability Study of SYMHYD and TANK Model Using Different Type of Objective Functions and Optimization Methods (다양한 목적 함수와 최적화 방법을 달리한 SIMHYD와TANK 모형의 적용성 연구)

  • Sung, Yun-Kyung;Kim, Sang-Hyun;Kim, Hyun-Jun;Kim, Nam-Won
    • Journal of Korea Water Resources Association
    • /
    • v.37 no.2
    • /
    • pp.121-131
    • /
    • 2004
  • SIMHYD and TANK model are used to predict time series of daily rainfall-runoff of Soyang Dam and Youngcheon Dam watershed. The performances of SIMHYD model with 7 parameters and TANK model with17 parameters are compared. Three optimization methods (Genetic algorithm, Pattern search multi-start and Shuffled Complex Evolution algorithm) were applied to study-areas with 3 different types of objective functions. Efficiency of TANK model is higher than that of SIMHYD. Among different types of objective function, Nash-sutcliffe coefficient is found to be the most appropriateobjective function to evaluate applicability of model.

Full Waveform Inversion Using Automatic Differentiation (자동 미분을 이용한 전파형 역산)

  • Wansoo, Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.242-251
    • /
    • 2022
  • Automatic differentiation automatically calculates the derivatives of a function using the chain rule once the forward operation of a function is defined. Given the recent development of computing libraries that support automatic differentiation, many researchers have adopted automatic differentiation techniques to solve geophysical inverse problems. We analyzed the advantages, disadvantages, and performances of automatic differentiation techniques using the gradient calculations of seismic full waveform inversion objective functions. The gradients of objective functions can be expressed as multiplications of the derivatives of the model parameters, wavefields, and objective functions using the chain rule. Using numerical examples, we demonstrated the speed of analytic differentiation and the convenience of complex gradient calculations for automatic differentiation. We calculated derivatives of model parameters and objective functions using automatic differentiation and derivatives of wavefields using analytic differentiation.

Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based inverse characterization method

  • Shang, Shen;Yun, Gun Jin;Kunchum, Shilpa;Carletta, Joan
    • Structural Engineering and Mechanics
    • /
    • v.45 no.4
    • /
    • pp.471-494
    • /
    • 2013
  • In this paper, identification of isotropic and orthotropic linear elastic material constitutive parameters has been demonstrated by a FEA-free energy-based inverse analysis method. An important feature of the proposed method is that it requires no finite element (FE) simulation of the tested material. Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress fields enforcing the equilibrium condition and DIC strain fields using interpolation functions. Boundary tractions and displacements are implicitly recast into an objective function that measures the energy residual of external work and internal elastic strain energy. The energy conservation principle states that the residual should be zero, and so minimizing this objective function inversely identifies the constitutive parameters. Synthetic data from simulated testing of isotropic materials and orthotropic composite materials under 2D plane stress conditions are used for verification of the proposed method. When identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways that create non-uniform stress distributions. The sensitivity of the parameter identification method to noise in both the measured full-field DIC displacements and loadings has been investigated.

A numerical study on optimal FTMD parameters considering soil-structure interaction effects

  • Etedali, Sadegh;Seifi, Mohammad;Akbari, Morteza
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.527-538
    • /
    • 2018
  • The study on the performance of the nonlinear friction tuned mass dampers (FTMD) for the mitigation of the seismic responses of the structures is a topic that still inspires the efforts of researchers. The present paper aims to carry out a numerical study on the optimum tuning of TMD and FTMD parameters using a multi-objective particle swarm optimization (MOPSO) algorithm including soil-structure interaction (SSI) effects for seismic applications. Considering a 3-story structure, the performances of the optimized TMD and FTMD are compared with the uncontrolled structure for three types of soils and the fixed base state. The simulation results indicate that, unlike TMDs, optimum tuning of FTMD parameters for a large preselected mass ratio may not provide a best and optimum design. For low mass ratios, optimal selection of friction coefficient has an important key to enhance the performance of FTMDs. Consequently, a free parameter search of all FTMD parameters provides a better performance in comparison with considering a preselected mass ratio for FTMD in the optimum design stage of the FTMD. Furthermore, the SSI significant effects on the optimum design of the TMD and FTMD. The simulation results also show that the FTMD provides a better performance in reducing the maximum top floor displacement and acceleration of the building in different soil types. Moreover, the performance of the TMD and FTMD decrease with increasing soil softness, so that ignoring the SSI effects in the design process may give an incorrect and unrealistic estimation of their performance.

Parameter Calibration and Estimation for SSARR Model for Predicting Flood Hydrograph in Miho Stream (미호천유역 홍수모의 예측을 위한 SSARR 모형의 매개변수 보정 및 추정)

  • Lee, Myungjin;Kim, Bumjun;Kim, Jongsung;Kim, Duckhwan;Lee, Dong ryul;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.423-432
    • /
    • 2017
  • This study used SSARR model to predict the flood hydrograph for the Miho stream in the Geum river basin. First, we performed the sensitivity analysis on the parameters of SSARR model to know the characteristics of the parameters and set the range. For the parameter calibration, optimization methods such as genetic algorithm, pattern search and SCE-UA were used. WSSR and SSR were applied as objective functions, and the results of optimization method and objective function were compared and analyzed. As a result of this study, flood prediction was most accurate when using pattern search as an optimization method and WSSR as an objective function. If the parameters are optimized based on the results of this study, it can be helpful for decision making such as flood prediction and flood warning.

Multi-Objective Optimization of Turbofan Engine Performance Using Particle Swarm Optimization (Particle Swarm Optimization을 이용한 터보팬 엔진 다목표 성능 최적화 연구)

  • Choi, Jaewon;Chung, Wonchul;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.326-333
    • /
    • 2015
  • A turbo fan engine performance analysis program combined with a particle swarm optimization(PSO) has been developed to optimize the major design parameters of the combat aircraft gas turbine engine. The optimized parameters includes bypass ratio, fan pressure ratio, high pressure compression ratio and burner exit temperature. The objective parameters have been determined using a multi-objective function consisting of the net thrust and specific fuel consumption along a weight function. The basic model for the combat aircraft gas turbine engine has been selected as the F404 turbofan engine which is widely used in the combat aircraft, F-18 and Korean high level training aircraft, T-50. The optimal conditions of four parameters have been obtained for various design conditions.

Videostrobokymographic Analysis of the Benign Vocal Folds Lesions (양성 성대 질환에서의 Videostrobokymography 소견)

  • 김동영;성명훈;김광현;최승호;왕수건
    • Journal of the Korean Society of Laryngology, Phoniatrics and Logopedics
    • /
    • v.13 no.1
    • /
    • pp.5-17
    • /
    • 2002
  • Objectives : Videostrobokymography(VSK) has been recently developed and reported by Sung et at. We aimed to analyze vibratory patterns and objective parameters in various benign vocal fold lesions using VSK, and examine the efficacy of VSK in clinical application. Materials and Methods : Using VSK, we analyzed the vibration pattern of normal vocal fold and various benign lesions, such as nodules, polyps, cysts, Reinke's edema and unilateral vocal fold paralysis. We also calculated objective parameters, open quotient and asymmetric index, and compared them with mean values of parameters in normal controls. Results : In nodules, polyps, and cysts, the open quotient on the site of the lesion was similar to the mean value in normal controls, however, on the other part of the vocal folds it was much larger than normal mean value. In Reinke's edema, irregular and asymmetric vibration was observed. The posterior portion of the vocal folds showed larger open quotients than the anterior portion. In the unilateral vocal fold paralysis, irregular vocal folds vibration and incomplete closure of the vocal folds were documented. Much larger asymmetric indices were calculated in the unilateral vocal fold paralysis than in normal controls and other lesions. The asymmetric index could be a good quantitative parameter of vibration from a patient with vocal fold paralysis. Conclusion : This study demonstrated that VSK could generate clear quantitative documentations of fine vibrations of vocal folds in many different benign lesions. VSK has a potential as an effective tool for quantitative analysis of vibratory patterns of the vocal folds iii clinical settings.

  • PDF

An Interactive Fuzzy Approach for Multiobjective Nonlinear Programming Problems with Fuzzy Parameters (퍼지 모수를 가지는 다목적 비선형 계획 문제의 대화형 퍼지 접근)

  • 이상완;남현우;윤연근
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.22 no.2
    • /
    • pp.67-78
    • /
    • 1997
  • In general, two types fuzziness of human judgements should be incorporated in multiobjective programming problems. One is the expert's ambigjous understanding of the nature of the parameters in the problem formulation process and the other is the fuzzy goals of the decision maker for each of the objective functions. In this paper, we present a new interactive fuzzy approach for obtaining the satisficing solution which efficiently reflect both types of fuzziness. An illustrative numerical example nonlinear programming problems with fuzzy parameters is demonstrated along with the corresponding computer outputs.

  • PDF

Bayesian Model Selection in Weibull Populations

  • Kang, Sang-Gil
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1123-1134
    • /
    • 2007
  • This article addresses the problem of testing whether the shape parameters in k independent Weibull populations are equal. We propose a Bayesian model selection procedure for equality of the shape parameters. The noninformative prior is usually improper which yields a calibration problem that makes the Bayes factor to be defined up to a multiplicative constant. So we propose the objective Bayesian model selection procedure based on the fractional Bayes factor and the intrinsic Bayes factor under the reference prior. Simulation study and a real example are provided.

  • PDF

Optimal Design of Arrayed Waveguide Grating

  • Jung, Jae-Hoon
    • Journal of the Optical Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.99-103
    • /
    • 2004
  • This paper describes the optimal design of an AWG spectrum to meet various specifications and improve some physical parameters. The objective function is the norm of the difference between design parameters and target values. To obtain the design parameters, the Fourier model is employed and the design variables arc spacing of array waveguide, width of array waveguide, optical path difference, and focal length. The (1+1) Evolution Strategy is employed as the optimization tool. The optimization procedure is applied to a 16-channel AWG and the optimized design variables will considerably improve the system performance.