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Bayesian Model Selection in Weibull Populations!)

Sang Gil Kang?)

Abstract

This article addresses the problem of testing whether the shape
parameters in- k independent Weibull populations are equal. We propose ‘a
“Bayesian model selection procedure for equality of the shape parameters.
The noninformative prior is usually improper which yields a calibration
problem that makes the Bayes factor to be defined up to a multiplicative
constant. So we propose the objective Bayesian model selection procedure
based on the fractional Bayes factor and the intrinsic Bayes factor under
the reference prior. Simulation study and a real example are provided.

Keywords : Equality Of The Shape Parameters, Fractional Bayes
Factor, Intrinsic Bayes Factor, Reference Prior, Weibull Populations.

1. Introduction

In Bayesian model selection or testing problem, the Bayes factor under proper
priors or informative priors have been very successful. However, limited
information and time constraints often require the use of noninformative priors.
Since noninformative priors such as Jeffreys’ prior or reference prior (Berger and
Bernardo, 1989, 1992) are typically improper so that such priors are only defined
up to arbitrary constants which affects the values of Bayes factors. Spiegelhalter
and Smith (1982), O’Hagan (1995) and Berger and Pericchi (1996) have made
efforts to compensate for that arbitrariness.

Spiegelhalter and Smith (1982) used the device of imaginary training samples in
the context of linear model comparisons to choose the arbitrary constants. But the
choice of imaginary training sample depends on the models under comparison, and
so, there is no guarantee that the Bayes factor of Spiegelhalter and Smith (1982)
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is coherent for multiple model comparisons. Berger and Pericchi (1996) introduced
the intrinsic Bayes factor using a data-splitting idea, which would eliminate the
arbitrariness of improper priors. O’Hagan (1995) proposed the fractional Bayes
factor. For removing the arbitrariness he used to a portion of the likelihood with a
so-called the fraction b. These approaches have shown to be quite useful in many
statistical areas (Kang, Kim and Lee, 2005, 2006).

The Weibull distribution is widely used in lifetime data analysis in medical and
biological sciences, engineering, etc. Many statistical methods has been developed
for this distribution. A general review of the Weibull distribution including several
references to applications in diverse fields is given by Johnson, Kotz and
Balakrishnan (1994) and Lawless (2003) discussed the specific application of this
distribution to failure data analysis.

For comparison of the shape parameters of Weibull distributions, Thoman and
Bain (1969) proposed a test based on the maximum likelihood estimators and gave
some tables of percentage points by Monte Carlo methods. The approximate
Bartlett’'s procedure and the likelihood ratio procedure for testing the common
shape parameter are given in Lawless and Mann (1976) and Lawless (2003). Using
the data of Nelson (1970), Lawless (2003) showed that the results of the two tests
are in broad agreement, and it appears that there is no real evidence of a
difference in shape parameters. However there is a little work in this problem
from the viewpoint of objective Bayesian framework. ;

This paper focuses on the objective Bayesian method for testing equality of the
shape parameters in the Weibull distributions. For dealing this problem, we use
the Bayesian model selection based on the fractional Bayes factor (O'Hagan, 1995)
and the intrinsic Bayes factor (Berger and Pericchi, 1996, 1998). An excellent
exposition of the objective Bayesian method to model selection is Berger and
Pericchi (2001).

The outline of the remaining sections is as follows. In Section 2, we introduce
the Bayesian model selection based on the Bayes factor. In Section 3, Using the
reference prior, we provide the Bayesian model selection procedure based on the
fractional Bayes factor and intrinsic Bayes factor. In Section 4, simulation study
and a real example are given. .

2. Intrinsic and Fractional Bayes Factors

Models Mi, Mg‘,"',_ M, are under consideration, with the data x= (x1,29, " T,)
having probability density function f;(z ! 6;) under model M,. The parameter

vectors 0; are unknown. Let m;(8;) be the prior distributions of model M;, and let
p; be the prior probabilities of model A, i=1,2,---,q. Then the posterior -
probability that the model A is true is : ‘
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P(M; | z)—('i) ci) -Bﬁ)_ : | (1)

=1Di

where Bj; is the Bayes factor of model M; to model 3; defined by

ffj($ | ,)m;(8,)d8; . (z)
" f‘fi(z l ei)"ri(ei)dei B mi(x) )

2

The Bj; interpreted as the comparative support of the data for the model j to i.
The computation of B; needs specification of the prior distribution ; :(8;) and
(9 ). Often in Bayesian analysis, one can use noninformative priors 7r . Common
choices are the uniform prior, the Jeffreys’ prior and the reference prior. The
noninformative prior 72 is typically improper. Hence the use of noninformative
prior 7#¥(+) in (2) causes the Bj to contain unspecified constants. To solve this

problem, Berger and Pericchi (1996) proposed the intrinsic Bayes factor, and
O'Hagan (1995) proposed the fractional Bayes factor.

One solution to this indeterminacy problem is to use part of the data as a
training sample. Let z(I) denote the part of the data to be so used and let z(—1)
be the remainder of the data, such that

0<mfv(z(l))<00,i=1,---,q. 3

In view (3), the posteriors 71 (8; | (1)) are well defined. Now, consider the Bayes
factor, B;(l), for the rest of the data z(—1), using 79,1 (1)) as the priors:

[ #a=11 8,200x¥ (051 =),

B(1) = = BY - BYz(1)) 4)
/ flz(=1) 1 8,z(1))x" (6, | (1))ds;
where
N N
N_ pNy_ T (z) N — m; (1))
Bi=Biw= vy ad 0= we)

are the Bayes factors that would be obtained for the full data z and training
samples z(l), respectively.

Berger and Pericchi (1996) proposed the use of a minimal training sample to
compute Bilf(a:(l)). Then, an average over all the possible minimal training samples
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contained in the sample is computed. Thus the arithmetic intrinsic Bayes factor
(AIBF) of M; to M; is

Bi'= B} - EB” (z(1)). (5)

where L is the number of all possible minimal training samples. Also the median
intrinsic Bayes factor (MIBF) by Berger and Pericchi (1998) of M; to X is

Bjjylz B]I'V * ME[B{;V(Z(D)]’ (6)

where ME indicates the median, here to be taken over all the training sample
Bayes factors. Therefore we can also calculate the posterior probability of ‘M,
using (1), where B;; is replaced by B]’,“ and Bf,w from (5) and (6).

The fractional Bayes factor (O’Hagan, 1995) is based on a similar intuition to
that behind the intrinsic Bayes factor but, instead of using part of the data to
turn noninformative priors into proper priors, it uses a fraction, b, of each
likelihood function, L(8,)=f,(z | @,), with the remaining 1—b fraction of the
likelihood used for model discrimination. Then the fractional Bayes factor (FBF) of
model M; versus model M is

/ LYz | 8)(6,)d8; md(z)
F_ pN =BY. —

B.i= A _B'i . —. (7)
T [ o) @)as;, " M@

O’'Hagan (1995) proposed three ways for the choice of the fraction b. One common
choice of b is b=m/n, where m is the size of the minimal training sample,
assuming that this number is uniquely defined. (see O'Hagan (1995, 1997) and the
discussion by Berger and Mortera in O’Hagan (1995)).

3. Bayesian Model Selection Procedures

Let X be a Weibull distribution Wei(a,8) with density function

flzlap)= g(%)ﬂ_lexp{— (%)B}, z>0, €))

where o >0 is the scale parameter and §> 0 is the shape parameter. Suppose
that X, X;,,4=1,-,k, denote independent random samples from the. ith
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Weibull populations with the scale parameter «; and the shape parameter (3;. We
are interest to testing the hypotheses H,: B3, == vs. Hy: 0, #---# [, based

on the fractional Bayes factor and the intrinsic Bayes factor.
The two default models being compared are

flz 1 8,)= Weilz, | a,,B) - Weilz, | ar8), =7 (,)
and

M,: f(z16,)= Weilz, | a),8,) - Weilz, | apB) 73 (0,),

where z= (zp"’ﬁnk), z,':(a:]l,"'axini)a i=1,,k, 0, z(al; : ’ak’ﬂ) and 6, = (al’

"')akngly'")ﬂk)-

3.1 Bayesian Model Selection based on the Fractional Bayes Factor

Under the model M, the reference prior for 8{= 3, =---= ;) and (@, +ray) is

(g, o, B)ocar - ap 1AL 9)

This reference prior is derived by Kim, Kang and Lee (2006). They showed that
the posterior under the above reference prior is proper if n; +---+n,—k>0. And

the likelihood function under the model M, is
B ny; Ny kE T;; B
Lia;, a8l 2)=0F {Ha nﬁ} [HH:I: ]exp - 2 E(#) , (10)
i=13 i=1j=1 i

where n=mn, +++n,. Then from the likelihood (10) and the reference prior (9),
the element of the FBF under M, is given by

m';(z)=f mf B f " LYoy, B | @I oy s B)don - doyd

—f b b"[Han)HHH ] mb= k‘l[ﬁﬁ(x?j/fjxg)b]dﬂ.

i=1 i=1j=1 i=1lj=1 i=1
For the model M,, the reference prior for (al,""amﬂp”',ﬁk) is

TV (agye -0 By B doc oy b BT - B L (11)

This reference prior is derived by Sun (1997) and the posterior is proper if
n; > 1,i=1,---,k. The likelihood function under the model 34, is
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\A
x”) } (12)
1\ &

Loy, o, B0 | )= H " "'ﬂ [Hw }exp[— ;(

i=1

Thus from the likelihood (12) and the reference prior (11) the element of FBF
under M, gives as follows.

mg(x)=/0w... fowfow--- /:Lb(au'",amﬂv""ﬂk | z)

X7y (0,00 By > B Ve, -+ doydBy -+ dBy

=b_b"[;ljll’(bn [HHm ]H[f g 2H( /é)‘le;-)bdﬁ,-].

i=1j=1 j=1
Therefore the element le of the FBF is given by

S, (z)
N __ 2
B21 - Sl (.’L') ) (13)
where
s@= [ "o T $308) s
i=1j=1 j=1
and
— 7 — 2 d ]
Z) [‘/ o ]'1( ' /JZJI:BU) g
And the ratio of marginal densities with fraction b is
mi(z) S (z:b)
m(z) CACIN
where
n; b
S (z;b) = f gk 1[I"[H( /Zx,@”dﬂ
i=1j=1 i=1
and
Sg(x;b)— [/ A 2H( /Ew,J) dﬁ}
i=1 i=1
Thus the FBF of M, versus 3 is given by
Siz;b
pr - 5@ S@b) -

Sl (97) ) Sz(x ;b) '
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Note that the calculation of the FBF of M, versus M; requires an one
dimensional numerical integration.

3.2 Bayesian Model Selection based on the Intrinsic Bayes Factor

The element By ,(13), of the intrinsic Bayes factor is computed in the fractional

Bayes factor. So using minimal training sample, we only calculate the marginal
densities under M; and M,, respectively. The marginal density of (X 1]1

kasz) is finite for all 1 < j, <j, < ny,-+,1 <1 <ly <y under each model

(Sun, 1997; Kim, Kang and Lee, 2006). Thus we conclude that any training sample
of size 2k is a minimal training sample.

The marginal density m?’ (‘lel’xlj?""’wkll’wklz) under M is given by

(o] [eo] [e )]
N —
m (mljx’mljzw""’xkll’zklz) - fg -/0 /0 f(‘z‘ljl"rljz""’wkll’wkb baysee akaIB)
x 7 (ay,-+ oy B)doy -+ doydp

S 181 (E7

= ]11(1‘1]"7"13’ : ’xkll’mklz)’

where 1< j, <j, <ny,--,1 <1 <ly <m. And the marginal density mév(mljl,
55Ty, Ty,) under M, is given by

my (231] "/1:1]7 Ty ’wklz

- f f f f f(mlJ’xlh L] ?%12‘ a5 By 0t Bi)

X Ty (ala"'aakaﬂl""7ﬁk)dal dakdﬁl ka

&
= H[f H( ,]/Zw,])dﬂ] = TZ(xljl’x1j2"“’xkll’mklz)'
0

i=1 j=1

Therefore the AIBF of M, versus M, is given by

Sg (z) 1 T (xlj awlj IRRAEY TR ) )
BA =V ! S K (15)
2 S (z) L]UE% 1%3 T2(£EU E VRN ’xkl,’xkl,)
k
where L=[]]n;(n;—1)l/2*. And the MIBF of M, versus M, is given by
i=1
B = S (=) . ]-’1(xlj\’xlj‘z’.“’zkll’zkl‘z) . (16)
S]( ) T2(x1j,’m1j2""’mkll’xklz)
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Note that the calculations of the AIBF and the MIBF of M, versus M) require an
one dimensional integration.

4. Numerical Studies

In order to assess the Bayesian model selection procedures, we evaluate the
posterior probability for several configurations (a;8;), n;, =1,k and k. In
particular, for fixed (a;,8;) we take 200 independent random samples of Xj;,
1=1,--,k, j=1,--, n; from the model (8). In our simulation, we examine the
cases when the population size k equals 3 and 5.

The posterior probabilities of M; being true are computed assuming equal prior
probabilities. Table 1 and 2 show the results of the averages and the standard
deviations in parentheses of posterior probabilities. From Table 1 and 2, the FBF,
the AIBF and the MIBF give fairly reasonable answers for all configurations,
(a;,8;), i=1,---,k. Also the FBF, the AIBF and the MIBF give a similar behavior
for all sample sizes. However for unclear situations like (0.5,0.5, 0.5,1.5,1.5) with
the unbalanced data the MIBF accepts the model M, but the AIBF reject the
model M, and also for the case (1,1,1,3,3) with unbalanced data the MIBF
favours the model M,. Thus from the results of Table 1 and 2, the AIBF give
more reasonable results than the MIBF and the FBF.

Example. Nelson (1972) described the time to breakdown of a electrical
insulating fluid subjected to a constant voltage stress in a life test experiment.
The data are breakdown times for seven groups of specimens, each group
involving a different voltage level. For this data sets, Lawless (2003) concluded
that there is no real evidence of difference in shape parameters of Weibull
distributions by the likelihood ratio test and the approximate Bartlett’s test and
showed that the results of the two tests are in broad agreement.

The following data is a portion of the data sets (Nelson, 1972) to compare the
likelihood ratio test with the Bayesian testing procedures.

Voltage Level Breakdown Times
1 (30 kV) 17.05, 22.66, 21.02, 175.88, 139.07, 144.12, 20.46, 43.4, 194.9, 473, 7.74

2 (32 kKV) 0.4, 82.85, 9.88, 89.29, 215.1, 2.75, 0.79, 15.93, 3.91, 0.27, 0.69, 100.58,
27.8, 13.95, 53.24

3 (34 kV) 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.5, 8.27, 33.91, 32.52, 3.16,
4.85, 2.78, 4.67, 1.31, 12.06, 36.71, 72.89

4 (36 kV) 587,1322, 2.58, 1.69, 2.71, 255, 0.35, 0.99, 3.99, 367, 2.07, 0.96, 5.35,

5 (38 kV) 047, 0.73, 1.4, 0.74, 0.39, 1.13, 0.09, 2.38
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Table 1: The Averages and the Standard Deviations in Parentheses of
Posterior Probabilities

BB | aprag | nyeemy PAM, | z) P, | ) PY(M, | )
0.5,05,05 1,11 335 0.645 (0.157) 0.687 (0.178) 0.707-(0.168)
555 0.678 (0.175) 0.771 (0.184) 0.789 (0.171)

55,7 0.714 (0.158) 0.792 (0.157) 0.809 (0.143)

1,15 3,35 0.644 (0.156) 0.684 (0.178) 0.704 (0.165)

555 0.682 (0.155) 0.778 (0.156) 0.795 (0.142)

55,7 0.723 (0.151) 0.795 (0.155) 0.809 (0.144)

0.1,1,10 3,35 0.643 (0.158) 0.687 (0.169) 0.706 (0.157)

555 0.692 (0.137) 0.789 (0.139) 0.806 (0.126)

55,7 0.727 (0.162) 0.802 (0.164) 0.819 (0.152)

0.5,05,1.5 1,11 335 0.500 (0.208) 0.440 (0.259) 0477 (0.253)
55,5 0.436 (0.228) 0.511 (0.260) 0.545 (0.250)

55,7 0.405 (0.242) 0.419 (0.272) 0.451 (0.273)

1,15 3,35 0.479 (0.210) 0.420 (0.254) 0.454 (0.249)

555 0.363 (0.225) 0.429 (0.264) 0.464 (0.262)

55,7 0.374 (0.249) 0.383 (0.282) 0.414 (0.283)

0.1,1,10 335 0.502 (0.206) 0.449 (0.254) 0.485 (0.250)

555 0.398 (0.228) 0.467 (0.264) 0.501 (0.260)

55,7 0.406 (0.249) 0.421 (0.284) 0.453 (0.284)

1,11 1,11 335 0.649 (0.155) 0678 (0.182) 0.697 (0.167)
555 0.695 (0.140) 0.780 (0.148) 0.794 (0.140)

557 0.721 (0.183) 0.786 (0.185) 0.801 (0.174)

1,15 335 0.641 (0.152) 0.668 (0.172) 0.685 (0.163)

555 0.678 (0.159) 0.760 (0.176) 0.775 (0.164)

55,7 0.718 (0.173) 0.782 (0.180) 0.796 (0.171)

0.1,1,10 335 0.650 (0.150) 0.680 (0.168) 0.698 (0.155)

555 0.677 (0.160) 0.762 (0.169) 0.779 (0.158)

55,7 0.694 (0.188) 0.757 (0.200) 0.771_(0.191)

1,1,3 1,11 335 0516 (0.209) 0.440 (0.251) 0.471 (0.243)
555 0.360 (0.222) 0.401 (0.256) 0.434 (0.253)

55,7 0.372 (0.250) 0.359 (0.274) 0.383 (0.276)

1,15 335 0.521 (0.186) 0.443 (0.228) 0.476 (0.221)

555 0.376 (0.231) 0.416 (0.265) 0.448 (0.259)

55,7 0.367 (0.251) 0357 (0.278) 0.334 (0.279)

0.1,1,10 335 0.523 (0.210) 0.449 (0.252) 0.476 (0.247)

555 0.394 (0.231) 0.437 (0.266) 0.467 (0.262)

55,7 0.391 (0.254) 0.384 (0.281) 0.411 (0.284)

333 1,11 335 0.662 (0.129) 0.622 (0.168) 0.645 (0.163)
55,5 0.677 (0.162) 0.690 (0.191) 0.707 (0.185)

55,7 0.728 (0.151) 0.730 (0.173) 0.748 (0.162)

L15 335 0.666 (0.112) 0.619 (0.146) 0.640 (0.136)

555 0.677 (0.171) 0.685 (0.204) 0.704 (0.199)

55,7 0.717 (0.168) 0.719 (0.193) 0.735 (0.188)

0.1,1,10 3,35 0.659 (0.126) 0.611 (0.167) 0.636 (0.152)

555 0.684 (0.163) 0.700 (0.192) 0.719 (0.184)

55,7 0.716 (0.177) 0.716 (0.20D) 0.733 (0.195)

0513 1,11 3,35 0.352 (0.218) 0.260 (0.230) 0.291 (0.232)
555 0.198 (0.202) 0.221 (0.237) 0250 (0.245)

557 0.162 (0.200) 0.150 (0.210) 0.170 (0.222)

1,15 335 0.372 (0.229) 0.286 (0.251) 0.318 (0.252)

555 0.203 (0.196) 0.230 (0.233) 0.261 (0.244)

55,7 0.206 (0.208) 0.191 (0.219) 0.213 (0.229)

0.1,1,10 335 0.345 (0.215) 0.253 (0.228) 0.289 (0.233)

555 0.191 (0.193) 0.211 (0.226) 0.239°(0.234)

55,7 0.172 (0.194) 0.157 (0.205) 0.179 (0.218)
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Table 2: The Averages and the Standard Deviations in Parentheses of
Posterior Probabilities

Bi B | ey Ny sy PF(M | z) pAl(]W1 | z) pMI(j;[1 | )
0.5,0.5,0.5, 111,11 33333 0.617 (0.177) 0.739 (0.204) 0.793 (0.188)
05,05 33355 0.751 (0.182) 0.813 (0.176) 0.859 (0.143)
1,1155 33333 0.597 (0.177) 0.710 (0.213) 0.774 (0.189)

33355 0.765 (0.187) 0.827 (0.179) 0.872 (0.146)

0.1,0.5, 33333 0.623 (0.162) 0.740 (0.185) 0.800 (0.154)

15,10 33355 0.736 (0.184) 0.808 (0.171) 0.855 (0.141)

0.5,0.5, L,,111 33333 0.430 (0.222) 0500 (0.287) 0.590 (0.262)
0.5,1.5,1.5 33,355 0.485 (0.270) 0.420 (0.307) 0.509 (0.307)
11,155 33,333 0.422 (0.197) 0.491 (0.259) 0.580 (0.241)

33,355 0.494 (0.267) 0.428 (0.306) 0.509 (0.308)

0.1,0.5, 33333 0.463 (0.186) 0543 (0.237) 0.640 (0.205)

1,510 33355 0.508 (0.270) 0.441 (0.313) 0.526 (0.310)

1,1, 1,111 33333 0.625 (0.161) 0.725 (0.189) 0.776 (0.163)
11,1 33355 0.736 (0.184) 0.787 (0.182) 0.835 (0.148)
1,1,155 33333 0.626 (0.157) 0.725 (0.194) 0.781 (0.163)

33355 0.734 (0.199) 0.787 (0.208) 0.833 (0.170)

0.1,05, 33333 0.619 (0.149) 0.716 (0.186) 0.772 (0.151)

1,510 33355 0.750 (0.190) 0.806 (0.193) 0.845 (0.173)

1,1, 1,1,11,1 33333 0.438 (0.184) 0.466 (0.245) 0.556 (0.227)
1,3,3 33355 0521 (0.257) 0.416 (0.291) 0.485 (0.287)
1,1,155 33,333 0.468 (0.194) 0.506 (0.249) 0.582 (0.231)

33355 0.515 (0.260) 0.423 (0.299) 0.497 (0.296)

0.1,0.5, 33333 0.448 (0.193) 0.480 (0.251) 0.559 (0.229)

1,510 33355 0.499 (0.269) 0.399 (0.297) 0.472 (0.297)

3,3, 1,1,1,11 33333 0.668 (0.107) 0.671 (0.172) 0.731 (0.132)
333 33355 0.773 (0.152) 0.721 (0.210) 0.764 (0.189)
1,1,155 33333 0.665 (0.125) 0.667 (0.175) 0.715 (0.156)

33355 0.795(0.128) 0.752 (0.182) 0.792 (0.156)

0.1,0.5, 33333 0.671 (0.122) 0.670 (0.182) 0.718 (0.155)

1,510 100,05 0.753 (0.169) 0.696 (0.234) 0.749 (0.206)

0.3,0.5, 1,1,1,1,1 33333 0.156 (0.158) 0.155 (0.199) 0.232 (0.225)
1,35 33355 0.081 (0.151) 0.040 (0.109) 0.058 (0.135)
1,1,155 33333 0.151 (0.147) 0.147 (0.177) 0.221 (0.204)

33,355 0.088 (0.172) 0.050 (0.140) 0.069 (0.166)

0.1,0.5, 33333 0.152 (0.149) 0.146 (0.180) 0.225 (0.202)

1,510 33,355 0.071 (0.130) 0.032 (0.083) 0.052 (0.119)

Table 3: p-values, Bayes Factor Values and Posterior Probabilities

M, p-value | Bf PAMmiz) BT PY(M, | z) B PM(M, ) z)
By = B3 =04 0.568 0.067 0937 0.038 0963 0.035 0.966
By = B3 =05 0.059 0272 0.786 0.303 0.768 0275 0.784

The p-values of likelihood ratio test (Lawless, 2003) and the values of the
Bayes factor and the posterior probability of Af; are given in Table 3. Note that

the maximum likelihood estimators of the shape parameters g; i=1,-:-,5, are

1059, 0561, 0.771, 0.889, and 1.363, respectively. We assume that the prior
probabilities are equal. From the results of Table 3, the likelihood ratio test, the
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FBF, the AIBF and the MIBF give fairly same answers. Also posterior
probabilities by the MIBF, the AIBF and the FBF give the similar behavior.

In Weibull populations, we developed the objective Bayesian model selection
procedure based on the fractional Bayes factor and intrinsic Bayes factor for
testing the equality of the shape parameters under the reference prior. From our
numerical results, the developed model selection procedures give fairly reasonable
answers for all parameter configurations. From our numerical results, we
recommend to use the AIBF than the FBF and the MIBF in practical application.
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