• Title/Summary/Keyword: objective cost function

Search Result 464, Processing Time 0.025 seconds

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Determination of Number of AGVs in Multi-path Systems By Using Genetic Algorithm (GA를 이용한 다중루프 시스템의 AGV 대수 결정 문제)

  • 김환성;이상훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.299-299
    • /
    • 2000
  • In this paper, a determination method of number of AGVs fer introducing to the multi-path material handling systems is presented by using genetic algorithm. For serving the raw material to each work stations automatically, there needs to introduce a AGVs for transfer the raw martial. To reduce the overall production cost in the material handling systems, however, a trade off exists between the amount of inventory hold on the shop floor and the number of AGVs needed to provide adequate service. In this paper, firstly a objective function which included the net present fixed costs of each stations and each purchased AGVs, delivering cost. stock inventory cost, and safety stock inventory cost is presented. Secondly by using genetic algorithm, the optimal reorder quantity at each stations is decided, where the number of AGVs is increased step by step. From a simulation with different GA parameters, we can determine a optimal number of AGVs to reduce the overall production cost. Thus, the effectiveness of GA for determining the number of AGVs is verified in automated material handling systems.

  • PDF

An unwanted facility location problem with negative influence cost and transportation cost (기피비용과 수송비용을 고려한 기피시설 입지문제)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.77-85
    • /
    • 2013
  • In the location science, environmental effect becomes a new main consideration for site selection. For the unwanted facility location selection, decision makers should consider the cost of resolving the environmental conflict. We introduced the negative influence cost for the facility which was inversely proportional to distance between the facility and residents. An unwanted facility location problem was suggested to minimize the sum of the negative influence cost and the transportation cost. The objective cost function was analyzed as nonlinear type and was neither convex nor concave. Three GRASP (Greedy Randomized adaptive Search Procedure) methods as like Random_GRASP, Epsilon_GRASP and GRID_GRASP were developed to solve the unwanted facility location problem. The Newton's method for nonlinear optimization problem was used for local search in GRASP. Experimental results showed that quality of solution of the GRID_GRASP was better than those of Random_GRASP and Epsilon_GRASP. The calculation time of Random_GRASP and Epsilon_GRASP were faster than that of Grid_GRASP.

A Study on Optimization of Cutting Conditions Using Machining Characteristics DB in High Speed Machining (가공특성 지식DB를 통한 고속가공에서 최적조건선정에 관한 연구)

  • Won J.Y.;Nam S.H.;Hong W.P.;Lee S.W.;Choi H.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.163-168
    • /
    • 2005
  • It is one of the most important things to determinate optimized cutting conditions which satisfy productivity and cost simultaneously in production and CAPP systems. These days many researchers have figured out the optimizing way for solutions of multi-object function to find the approach methods using algorithm such as genetic algorithm or tabu search, etc., instead of mathematical methods. The main creation of objective function is proposed by empirical method but which is difficult to set it up and to analysis. In this paper, an optimization method of cutting condition is shown using the ANN and GA for the multi-objective function in high speed machining.

  • PDF

Reasonable Optimum Design of Agricultural Reinforced Concrete Structure - Superstructures of Aqueduct - (농업용 철근콘크리트 구조물의 합리적인 최적설계 -수로교 상부구조물-)

  • Kim, Jong-Ok;Park, Chan-Gi;Cha, Sang-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.19-26
    • /
    • 2010
  • This study was conducted to find out the reasonable optimum design method of agricultural reinforced concrete structures. Selected design variables are the dimension of concrete section, reinforced steel area, and objective function is formulated by cost function. To test the reliability, efficiency, possibility of application and reasonability of optimum design method, both continuous optimization method and mixed-discrete optimization method were applied to the design of reinforced concrete superstructure of aqueduct and application results were discussed. It is proved that mixed-discrete optimization method is more reliable, efficient and reasonable than continuous optimization method for the optimum design of reinforced concrete agricultural structures.

A Study on the Optimum Operational Control of Power System (전렬계통의 합리적 운용제어에 관한 연구)

  • 정재길;박영문
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.33 no.10
    • /
    • pp.410-422
    • /
    • 1984
  • This paper presents a new practical method for optimal active and reactive power control for the economic operation in electrical power system, and the programs are developed for digital computer solution. The major features and techniques of this paper are as follows: 1) The method is presented for finding the equivalent active power balance equation applying the sparse Jacobian matrix of power flow equation instead of using B constant as active power balance equation considering transmission loss, and thus for determining directly optimal active power allocation berween generator unitw satisfying the equality and inequality constraints. 2) The method is proposed for solving directly the optimum economim dispatch problem without using gradient method and penalty function for both active and reactive power control. As a result, the computing time are reduced and convergence characteristic is remarkably improved. 3) Unlike most of conventional methods which adopt the transmission loss as a objective function for reactive power control, the total fuel cost of themal power plant is adopted as objective function for both active and reactive power control. consequently, more reasonable and economic profit can be achieved.

Multi-objective Optimization of High Speed Railway Steel Bridges (고속철도 강교량의 다목적 최적설계)

  • 조효남;민대홍;정기영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.263-270
    • /
    • 2002
  • This study proposes a multi-objective optimum design method for a rational optimization of high-speed railway bridges. This multi-objective optimization is found to be effective in optimizing multi-objective problems that incorporate cost and dynamic responses such as vertical acceleration and displacement. These design factors are so important in the high-speed railway bridges. And the trade off method which is one of the most typical multi-objective optimization methods is used in this study, since the dynamic factors are formulated as objective function and also considered as constraints. And the Pareto curve can be obtained by performing the multi-objective optimization for real high-speed railway bridges. Thus, it is found that more reasonable design can be obtained when compared with those using conventional design procedure.

  • PDF

A Vehicle Routing Problem in the Vendor Managed Inventory System (공급자 재고 관리 환경하의 차량 경로 문제)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.10 no.3
    • /
    • pp.217-225
    • /
    • 2008
  • The inventory routing problem (IRP) is an important area of Supply Chain Management. The objective function of IRP is the sum of transportation cost and inventory cost. We propose an Artificial Immune System(AIS) to solve the IRP. AIS is one of natural computing algorithm. An hyper mutation and an vaccine operator are introduced in our research. Computation results show that the hyper mutation is useful to improve the solution quality and the vaccine is useful to reduce the calculation time.

Estimating the Price of Anarchy Using Load Balancing Measure

  • Kim, Jae-Hoon
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.2
    • /
    • pp.148-151
    • /
    • 2009
  • We consider the problem of optimizing the performance of a system with resources shared by non-cooperative users. The worst-cast ratio between the cost of a Nash equilibrium and the optimal cost, called Price of Anarchy, is investigated. It measures the performance degradation due to the users' selfish behavior. As the objective function of the optimization problem, we are concerned in a load balancing measure, which is different from that used in the previous works. Also we consider the Stackelberg scheduling which can assign a fraction of the users to resources while the remaining users are free to act in a selfish manner.

A Study on tile Cross Section Optimization of P.C Box-Girder Bridge (P.C 박스거더교의 횡단면 최적설계에 관한 연구)

  • 방명석;김일곤;조현준
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.101-104
    • /
    • 1990
  • The program which could determine cross-sectional dimensions of the box girder bridge at tile stage of preliminary design was developed using the optimal technique in this study. It could minimize the cost and time required in the design of box girder bridges and the construction with the prestressed precast segmental method. Objective cost function consisted of four independent variables such as widths and depth of the cross-section. The Nelder-Mead method was used to solve the nonconstrained nonlinear problem like this.

  • PDF