• Title/Summary/Keyword: objective cost function

Search Result 464, Processing Time 0.017 seconds

Distribution System Reconfiguration Considering Customer and DG Reliability Cost

  • Cho, Sung-Min;Shin, Hee-Sang;Park, Jin-Hyun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.4
    • /
    • pp.486-492
    • /
    • 2012
  • This paper presents a novel objective function for distribution system reconfiguration for reliability enhancement. When islanding operations of distributed generators is prohibited, faults in the feeder interrupt the operation of distributed generators. For this reason, we include the customer interruption cost as well as the distributed generator interruption cost in the objective function in the network reconfiguration algorithm. The network reconfiguration in which genetic algorithms are used is implemented by MATLAB. The effect of the proposed objective function in the network reconfiguration is analyzed and compared with existing objective functions through case studies. The network reconfiguration considering the proposed objective function is suitable for a distribution system that has a high penetration of distributed generators.

Optimum Structural Design of D/H Tankers by using Pareto Optimal based Multi-objective function Method (Pareto 최적점 기반 다목적함수 기법에 의한 이중선각유조선의 최적 구조설계)

  • Na, Seung-Soo;Yum, Jae-Seon;Han, Sang-Min
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.284-289
    • /
    • 2005
  • A structural design system is developed for the optimum design of double hull tankers based on the multi-objective function method. As a multi-objective function method, Pareto optimal based random search method is adopted to find the minimum structural weight and fabrication cost. The fabrication cost model is developed by considering the welding technique, welding poses and assembly stages to manage the fabrication man-hour and process. In this study, a new structural design is investigated due to the rapidly increased material cost. Several optimum structural designs on the basis of high material cost are carried out based on the Pareto optimal set obtained by the random search method. The design results are compared with existing ship, which is designed under low material cost.

Model Structure and its Solution of Analytical Research on Transit Network Design (대중교통 노선망 설계에 관한 해석적 연구의 모형 구조와 풀이)

  • Park, Jun-Sik;Gwon, Yong-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.25 no.6
    • /
    • pp.129-140
    • /
    • 2007
  • The planning procedure of a transit operation consists of design, operation, and evaluation according to the research characteristics. There are some review studies on the operation and evaluation procedure, but the research on the design procedure has not yet been organized systematically. In this study, the research on transit system design was reviewed and the model structure and its solution method were arranged. The decision variables of the design procedure are network structure, line spacing or position, stop spacing, dispatching headway, and fleet size. In the analytical research on design procedure, system total cost is generally used as the objective function. System total cost is comprised of user cost, which is the sum of user access, waiting, and travel cost, and operating cost. Total cost of the transit system, used as the objective function, has the unique minimum because it is differentiable. There is a certain decision variable that makes the derivative of the objective function equal to zero and the second derivative of the objective function is positive. Therefore the decision variable that makes the first derivative of the objective function zero is the optimum that minimizes the objective function, and each of the cost components of the objective function become the same. This study is expected to help understanding about the research on the design procedure of transit operation planning and to help be a catalyst for relevant research.

Optimal Long-term Transmission Planning Algorithm using Non-linear Branch-and-bound Method (비선형 분산안전법을 이용한 최적장기송전계률 알고리)

  • 박영문;신중린
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.5
    • /
    • pp.272-281
    • /
    • 1988
  • The problem of optimal transmission system planning is to find the most economical locations and time of transmission line construction under the various constraints such as available rights-of-way, finances, the technical characteristics of power system, and the reliability criterion of power supply, and so on. In this paper the constraint of right-of-way is represented as a finite set of available rights-of-way. And the constructed for a unit period. The electrical constraints are represented in terms of line overload and steady state stability margin. And the reliability criterion is dealt with the suppression of failure cost and with single-contingency analysis. In general, the transmission planning problem requires integer solutions and its objective function is nonlinear. In this paper the objective function is defined as a sum of the present values of construction cost and the minimum operating cost of power system. The latter is represented as a sum of generation cost and failure cost considering the change of yearly load, economic dispatch, and the line contingency. For the calculation of operating cost linear programming is adopted on the base of DC load flow calculation, and for the optimization of main objective function nonlinear Branch-and-Bound algorithm is used. Finally, for improving the efficiency of B & B algorithm a new sensitivity analysis algorithm is proposed.

Double-Objective Finite Control Set Model-Free Predictive Control with DSVM for PMSM Drives

  • Zhao, Beishi;Li, Hongmei;Mao, Jingkui
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.168-178
    • /
    • 2019
  • Discrete space vector modulation (DSVM) is an effective method to improve the steady-state performance of the finite control set predictive control for permanent magnet synchronous motor drive systems. However, it requires complex computations due to the presence of numerous virtual voltage vectors. This paper proposes an improved finite control set model-free predictive control using DSVM to reduce the computational burden. First, model-free deadbeat current control is used to generate the reference voltage vector. Then, based on the principle that the voltage vector closest to the reference voltage vector minimizes the cost function, the optimal voltage vector is obtained in an effective way which avoids evaluation of the cost function. Additionally, in order to implement double-objective control, a two-level decisional cost function is designed to sequentially reduce the stator currents tracking error and the inverter switching frequency. The effectiveness of the proposed control is validated based on experimental tests.

Comparison of Cost Function of IMRT Optimization with RTP Research Tool Box (RTB)

  • Ko, Young-Eun;Yi, Byong-Yong;Lee, Sang-Wook;Ahn, Seung-Do;Kim, Jong-Hoon;Park, Eun-Kyung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.65-67
    • /
    • 2002
  • A PC based software, the RTP Research Tool Box (RTB), was developed for IMRT optimization research. The software was consisted of an image module, a beam registration module, a dose calculation module, a dose optimization module and a dose display module. The modules and the Graphical User Interface (GUI) were designed to easily amendable by negotiating the speed of performing tasks. Each module can be easily replaced to new functions for research purpose. IDL 5.5 (RSI, USA) language was used for this software. Five major modules enable one to perform the research on the dose calculation, on the dose optimization and on the objective function. The comparison of three cost functions, such as the uncomplicated tumor control probability (UTCP), the physical objective function and the pseudo-biological objective function, which was designed in this study, were performed with the RTB. The optimizations were compared to the simulated annealing and the gradient search optimization technique for all of the optimization objective functions. No significant differences were found among the objective functions with the dose gradient search technique. But the DVH analysis showed that the pseudo-biological objective function is superior to the physical objective function when with the simulated annealing for the optimization.

  • PDF

Determination of the Resetting Time to the Process Mean Shift by the Loss Function (손실함수를 적용한 공정평균 이동에 대한 조정시기 결정)

  • Lee, Do-Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.165-172
    • /
    • 2017
  • Machines are physically or chemically degenerated by continuous usage. One of the results of this degeneration is the process mean shift. Under the process mean shift, production cost, failure cost and quality loss function cost are increasing continuously. Therefore a periodic preventive resetting the process is necessary. We suppose that the wear level is observable. In this case, process mean shift problem has similar characteristics to the maintenance policy model. In the previous studies, process mean shift problem has been studied in several fields such as 'Tool wear limit', 'Canning Process' and 'Quality Loss Function' separately or partially integrated form. This paper proposes an integrated cost model which involves production cost by the material, failure cost by the nonconforming items, quality loss function cost by the deviation between the quality characteristics from the target value and resetting the process cost. We expand this process mean shift problem a little more by dealing the process variance as a function, not a constant value. We suggested a multiplier function model to the process variance according to the analysis result with practical data. We adopted two-side specification to our model. The initial process mean is generally set somewhat above the lower specification. The objective function is total integrated costs per unit wear and independent variables are wear limit and initial setting process mean. The optimum is derived from numerical analysis because the integral form of the objective function is not possible. A numerical example is presented.

A Study on the Sorting Effect in Aquafarm (양식선별효과에 관한 연구)

  • EH, Youn-Yang;Song, Dong-Hyo
    • The Journal of Fisheries Business Administration
    • /
    • v.49 no.4
    • /
    • pp.19-36
    • /
    • 2018
  • Overstock in aquaculture is a matter of concern in aquaculture management. To sort fish based on fingerling size in case of overstocking is an important problem in aquaculture farm. This study aims to determine the amount of fry overstock and sorting time in aquaculture farm. This study builds a mathematical model that finds the value of decision variables to optimize objective function summing up the fingerling purchasing cost, aquaculture farm operating cost and feeding cost under mortality and farming period constraints. The proposed mathematical model involves following biological and economical variables and coefficients: (1) number of fingerlings, (2) sorting time, (3) fish growth rate and variation, (4) mortality, (5) price of a fry (6) feeding cost, and (7) possible sorting periods. Numerical simulation is presented herein. The objective of numerical simulation is to provide decision makers to analyse and comprehend the proposed model. When extensive biological data about growth function of fry becomes available, the proposed model can be widely applicable to real aquaculture farms.

Robust Optimization Using Supremum of the Objective Function for Nonlinear Programming Problems (비선형계획법에서 목적함수의 상한함수를 이용한 강건최적설계)

  • Lee, Se Jung;Park, Gyung Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.5
    • /
    • pp.535-543
    • /
    • 2014
  • In the robust optimization field, the robustness of the objective function emphasizes an insensitive design. In general, the robustness of the objective function can be achieved by reducing the change of the objective function with respect to the variation of the design variables and parameters. However, in conventional methods, when an insensitive design is emphasized, the performance of the objective function can be deteriorated. Besides, if the numbers of the design variables are increased, the numerical cost is quite high in robust optimization for nonlinear programming problems. In this research, the robustness index for the objective function and a process of robust optimization are proposed. Moreover, a method using the supremum of linearized functions is also proposed to reduce the computational cost. Mathematical examples are solved for the verification of the proposed method and the results are compared with those from the conventional methods. The proposed approach improves the performance of the objective function and its efficiency.

A Paradox in an Indefinite Quadratic Transportation Problem

  • Arora, S.R.;Khurana, Archana
    • Management Science and Financial Engineering
    • /
    • v.7 no.2
    • /
    • pp.13-30
    • /
    • 2001
  • This paper discusses a paradox in an Indefinite Quadratic transportation Problem. Here, the objective function is the product of two linear functions. A paradox arises when the transportation problem admits of a total cost which is lower than the optimum cost, by transporting larger quantities of goods over the same route. A sufficient condition for the existence of a paradox is established. Paradoxical Range of flow is obtained for any given flow in which the corresponding objective function value is less than the optimum value of the given transportation problem. It is illustrated with the help of a numerical example.

  • PDF