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ABSTRACT

This paper discusses a paradox in an Indefinite Quadratic Transportation Problem. Here, the objec—
tive function is the product of two linear functions. A paradox arises when the transportation problem
admits of a total cost which is lower than the optimum cost, by transporting larger quantities of
goods over the same route. A sufficient condition for the existence of a paradox is established.
Paradoxical Range of Flow is obtained for any given flow in which the corresponding objective
function value is less than the oplimum value of the given transportation problem. It 1s illustrated
with the help of a numerical example.

1. INTRODUCTION

Cost Minimizing Transportation Problem (CMTP) have extensively been studied
by many researchers. F.Glover, D. Klingman and T.Ross [5] in 1974 considered a
constrained transportation problem. D.Klingman and R.Russel [9] in 1975 intro-
duced a specialized method for solving a transportation problem with several ad-
ditional linear constraints. Brigden [2] in 1974 considered the transportation
problem with mixed constraints. Brigden solved this problem by considering a
related standard transportation problem having two additional supply points and
two additional destinations.
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W. Szware [10] in 1971 discussed a paradox that arises when there is a solu-
tion of a transportation problem involving lesser cost than the optimal cost and is
available by shipping larger quantities of goods over the originally optimal routes.
So a paradox arises in the sense that more is being shipped at a lesser cost. He
developed the transportation scheme method for finding a paradoxical pair. His
approach was confirmed in the problem in which the objective function is linear.

In this paper such a paradox is discussed for a transportation problem when
the objective function is the product of two linear factors.

2. THEORETICAL DEVELOPMENT

We know linear functions are the type most useful and widely used in modelling
of mathematical optimization problems. Also quadratic functions and quadratic
problems are the least difficult to handle out of all non-linear programming prob-
lems. A fair number of functional relationships occurring in the real world are
truly quadratic. For example, kinetic energy carried by a rocket or an atomic par-
ticle is proportional to the square of its velocity. In statistics, the variance of a
given sample of observations 1s a quadratic function of the values that constitute
the sample. So there are countless other non-linear relationships occurring in
nature, capable of being approximated by quadratic functions.

Consider the following transportation problem when the objective function is
a product of linear functions.

Py - Minimize Z=NX)D(X)
fpenfae
subjectto D x;=a; Viel
j
Z % =b; Vied
;\ZUZO V@ el xJ
where I :Index set of supply points

J :Index set of destinations
X={x;}



A PARADOX IN AN INDEFINITE QUADRATIC TRANSPORTATION PROBLEM 15

%+ quantity transported from the i th supply point to the jth des-

tination
c;; : Per unit cost in transporting goods from the i th supply point to

the jth destination

d;: per unit depreciation (wear and tear) in transporting goods

from the ith supply point to the jth destination

In the above problem the total transportation cost of transporting one unit from

ith origin to jth destinationis X, ¢, x;;, but while transporting goods from one
origin to the other destination, some fraction of goods get damaged so the total cost

of damaged goodsis 2;%;d; x;. Our aim is to minimize the two costs simultane
ously; therefore we consider the product of two costs i.e., (X;X;c; %) (X;X;d; %) .

It can easily be proved that the objective function N (X)D (X) is quasiconcave.
The minimum of a quasiconcave function is obtained at an extreme point of the
feasible region. Hence to find an optimal solution of the given problem, our
method searches for an optimal extreme point.

Let an optimal feasible solution of (PB,) yield value Z° = N°D? of the objective

function and let F'° be the corresponding flow.

Clearly, Fo=%"a,=>"b;

iel Jed

It can be observed that a paradox exists if more than F%is flown at an objective
function value less than Z°.
Flow can be increased if

(a) supply points are allowed to increase their supplies or
(b) destinations are allowed to receive more or
(c) both (a) and (b) hold.

These give rise to the following three problems

(P) Minimize Z=N(X) D(X)
subject to > x;; 2 q; viel
J
Z xij = b] VJ cdJ

x>0 Vi) el xJ
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(Py) Minimize Z= N(X) D(X)
subjectto Y x;=a; Viel
J
z xij = b] \V/_] S J
x; 20 V@G, jlel xdJ
(Ps) Minimize Z=N(X)D(X)
subjectto D x; 2aq; Viel
j
inj Z bj V] edJ
x; 2 0 V@, el xd

The feasible region in each case is larger than that of (Fy), so it follows that opti-
mal objective function value in each of the three problems is not greater than that
of (P,). So more may be flown than that in (P;) at an objective function value less
that that of (). Hence a paradox may arise in these cases.

3. DEFINITIONS

(1) OBJECTIVE FUNCTION - FLOW PAIR: If Z° be the objective function
value and F° be the flow corresponding to a feasible solution X of (7,), then
the pair (Z° F°) is called the objective function flow pair corresponding to a
feasible solution X.

(2) PARADOXICAL PAIR: An objective function flow pair (Z, F) is called
paradoxical pair if Z < Z° and F > FO.

(3) BEST PARADOXICAL PAIR: The paradoxical pair (Z°, F") is called the
best paradoxical pair if V paradoxical pairs (Z, F), either Z" < Z, or Z" = Z but
F">F.

(4) PARADOXICAL RANGE OF FLOWS: If F" be the flow corresponding to
the best paradoxical pair then [F°, F*] is the paradoxical range of flows.

Theorem]l: Let X = {x;} be a basic feasible solution of (F,) with basis matrix B.
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Then it will be an optimal basic feasible solution if

R, 20 ycells @, j) . B
=0 veells@j) B
where R;=q; @5 -dy) (2 - cj)~Zy (2 —dyj)—Zs(zj5—Cy)
u;tuv; =2y v cells (i,j)eB
up +u; =2 v cells G, )) o B
Also u;tv;=cy veells @, )) ¢ B } W
u; +v, =d; v cells (G, )) ¢ B

Z, = the value of X;%;¢; x;, at the current basic feasible solution cor-
responding to B.

Z,=the value of 2,¥;d;x
responding to B.

;j» at the current basic feasible solution cor-

and 6 ; is the level at which a non basic cell (7, j) enters the basis replacing some
basic cell of B.

Note: u;, v;, 1, v; are determined by using equations (1) and taking one of

the u/s or v/s and u!’s or vj’s as zero.

Proof: Let Z° be the objective function value of the problem (Py). Let Z° = Z, Z,
Let Z be the value of the objective function at the current basic feasible
solution X = {x;} corresponding to the basis £5 obtained on entering the

cell (z, j) into the basis. Then 7= (Zy +q;;(cyy — 201 [ 23 +a;;(dy — 2)]

IS

Now, Z-Z°

[Z, +q(c; ~2)] [Zs +a;(dy —25)] - Z,\Z,

y

ZiZy+ Zyqy;(d - 2y) +Zgqyi (cii— z ) +q§ (c l,j_zlj)(dij —Z'ij) ~Z1Z,

Zyqy(d 5 —2) + Zoqy (e —2 ) + @i (Cy —2 ) (dyy —2}5)

q;[Z(d;—z) +Zy(cy—z5)+a; (¢ —z;)(d;—2%)]

This basic feasible solution will give an improved value of Zif Z<Z"
i.e., if Z - ZO <0 i.e., if q;; [Zl(dL] "Z;:J)+Z2 (Clj _zij)+qij (C ij _zij) (d i _z,l])] <0

since g; > 0
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[Zl(dij_z'ij)+Z2(cij_zij)+Qij (cii~2y) (dij—z'ij)] <0 ()

= One can move from one basic feasible solution to another basic feasible solution
on entering the cell (z, ) into the basis for which condition (2) is satisfied.
It will be an optimal basic feasible solution if

Qi (2 —dy)(zy—cy) -2y (Z—dy)—Za(z5-¢c) >0
or R;>20 Vecells(i,j)eB
where Rij :qu (z,L] _dlj) (zij _Cij) —Z] (z'L] —dij)—Zz(zij"“ c Z.j)
Also, 1t can easily be seen that .
R;=0 Veells 5,) € B
Thus the solution will be an optimal basic feasible solution if

R;20 veella (7,7) ¢ B

R,=0 Veells (7,/) € B
Theorem 2 : In an optimal basic feasible solution X = {x} of the problem (F),
if @)Jacell(p,q) wherep el g e Jfor which ‘

Zy(uy + v) + Zy(uty + v;) <0
and (y,+v,) (u, + v;)<0

OR (1) out of all those cells for which
(w; + vy (u) + v;) <0

we choose a cell ( p, q) for which

Zy(u,+ vy) + Zl(u;g + u&) <0

and (iii) there exists a positive number ; such that the same basis B remain
optimal when @, and b, are replaced by a, + ; and b, + ; respectively .

Then there exists a paradox.

Proof: For a basic feasible solution X = {x;} of the problem (P,), the dual vari-

’

; are given by

r
ables u;, v, u;, v

u; ¥ U= ¢y
r | —
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where (7, /) 1s a basic cell. The value of the objective function is given by

i

Z0=Z1Z7_ = ZZCijxijJ(ZZdijxijJ
g J
= ZZ(LLI'I'UJ).’)CUJ(ZZ(M;-&*U;)XUJ
[ [

- (o3 eegl3 o] g3 x3 o

= Zaiui+zbjUj:HZCziu'ﬁ—ijv'j}
L& j i J

Suppose 3 some cell (p, q) where p € I, g € J satisfying hypothesis (i) or (i) and
(iii) . Then in this case problem (P;) will emerge and quantity transported will be

(F°+ 7). Let the corresponding value of the objective function be Z,

where 7 = {ZuLaiJrZUjbj+u,p(ap+l)+vq(bq +l)}

[£537) J=q
{Z uia; +y vibj+uy(a, +1)+u (b, +Z)}
=p 7=

[Zy +1(up +u) [ 2o + 1 (u, +Up)]

Now, VAWA

(Z) + 1, +vy)] [Ze +1(u, + 1)) - 2,2,
=1Z y(uy + V) +1Z 5w}, +0y) + 1% (u, +v,) (W), +15)
= Z[Zz(u,p +Ue )+ Z1 (U, +ug) + 1w, +ug)(up +ug)]
<0 (using (1) and (1))

= Z-2°<0 or Z<Z°

Hence a paradox exists.

Theorem 3: Optimal basic solution of the problem (£,) yields the best paradoxical
pair.

Proof: let X™ = { x;} be an optimal basic feasible solution of the problem (P;), then

* * .
Yaxy=aza Viel
7
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T

and let F " and Z" be the corresponding optimal flow and optimal value of the ob-
jective function .
Congider the following problem

(P;) Minimize Z=N(X) D(X)

subjectto > xy=a;+p; yiel
J

Xxy=bi+q; vyijed
1

where >.q; =0= > p
J i
a,+p; 2 a; yiel
b;+qj2bj vJjed

Let X'={x/;} be an optimal basic feasible solution of problem (Pé ) Then X' will
be a feasible solution of problem (P,).

ie, MX)DX)>2NX"HDX)=Z"

—, No optimal basic feasible solution of the problem (Psf) can yield the objective
function value less than Z"i.e., Z"is the optimal objective function value.

— 4 any other distribution of supplies a;'s and demands b;'s better than a; and

b; v ¢ and j, for which the corresponding problem (PBI) has objective function

value less than Z" and flow greater than F". Hence, optimal basic feasible solu-
tion of the problem (P;) yields the best paradoxical pair.

‘Paradoxical Solution’ for a Specified Flow F in [F° F")

For a specified flow F in, [F°,F "1 problem (P,) given below is studied who-

se optimal feasible solution provides the best value of the objective function.
(P, Minimize Z=N(X)D(X)
x

subjectto > x; >aq; viel
j
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>y xy=F V@ Helxd
i

£

x; 2 0 VG, ) elxd

y

The associated equivalent transportation problem (F;) is

(Py) Minimize (ZZ cy ijJ (ZZ d yijj

i

subjectto ) y; =aj Viel
J
yUZO V(Z:,j)EI’XJ,
where I'=Iu{im+1m+2}

J=JdJui{n+1l,n+2}

¢y =cy; and dy=d; V@GHelxd
Let C'm+1,j= Cy and d’m-i-l,j = dlj
guch that ey dy = ?El}l(c i di)

’ - ! —_
Cin+l = Cig and di,n+1 =dy

such that Cip o= r_n}' nic,dy)
j&

Crm+2,j =M Vj ed
Cinez=M Viel
where M (> 0) is number.
Similarly, ez =M Vied
ine =M Viel
AlSO, C’m+1,n+1 = Clm-é—2,n+2 =M
C’m+1, n+2 = C'm+2,n+1 =0
likeWise ? ;n+1,n+1 = ;n+2,n+2 = M
'rn+1,n+2 = d'm+2,n+1 =0
a,i:ai7 tel;= a;11+lzzbj
J

by=b;, jed; by,=a
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’ — Lf _ 7l
Q 4= bn+2 = Z ai+z b] -F
4 J

We have introduced two additional sources and two additional destinations,
the method is such that it moves from an (m + 2) x (n + 2) transportation prob-

lem to an (m + 1) x (n + 1) transportation problem and finally to an mxn trans-

portation problem. The (m + L)th row and (n + 1)th column is introduced to balan-
ce the problem and (n + 2)th row and (n + 2)th column helps us in making the

total flow equal to F .
The problem (£;) 1s solved in the same way as (F;). The optimal solution of
(P,) 1s then obtained from the optimal solution of (F).

4. CONCLUSIONS

1. It is concluded that if the objective function is the product of two linear func-
tions and in an optimal basic feasible solution X = {x;} if there exists a cell (p,
q) with Zy(u,+v,) + Zy(u),+vy) < 0 and (u,+ v, ) (u),+ v;) < 0 then we can in-
crease the flow and reduce the cost i.e., a paradox exists.

2. Problem (P;) determines the best paradoxical pair.

3. To find an optimal solution for a specified flow, problem (P,) is solved by form-
g a problem (F;) by introducing two additional rows and columns.
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NUMERICAL ILLUSTRATION

Consider a balanced transportation problem

b
& 2 4 1
4
dy; 4 3 2
3 2 1
7
6 -4 2
1 1 3
3
2 -2 6
b,— 5 5 4

The objective function is MxinZ = N(X) D(X). The initial basic feasible solution

is:

a, \l,
2 4 1
(4 4
4 -3 2
3 2 1
1) ® Q) 7
68 -4 2
1 1 3
(3) 3
L 2 2 6

o«
I

b.— 5
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Optimal table is
_”'i L Wiy
2 (3) | 4 1 2
4
0 5
(-1) 4 3 (D 2
3 2 1
(5 n 6] 5 4
6 -4 2
1 (4) | 1 (3) 13
(3
0 0
(-8) -2 | (-6) -2 )
v, 5 4 3
v -10 8 G

Z,=16+15+2+1+9=43,

Z, =—12-30-4-2-18=-66
6,=4, 03=1, 6;,=3, 053=1
R,,=4(1)(3)-43(-1)-(-66) (3)=0,
R ,=1(1)(2)—-43(1)-(-66) (2)=0
Also Ry, R3y>0 -~ R; 20V (,))eB
. Optimality condition is satisfied.

Flow F'=4+5+ 1+ 1+ 3 =14 and Optimal solution is x,, =4, %5, =5, %3, =1
X53= 1, x33= 3 with value of the objective function = (43) (-66) = -2838

Now, we check the sign of (u+v;)(u; +v5})
Fori=1,j=1, (+vpi+v)) =@ +2)(-6+1)=(5) (-5)<0
Also, Zy(u,+v+2Z(ui+vy) =-66(5)+43(-5)<0

Loy at A b b+ A

The new optimal solution is
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G,J'
2 4 1
) +1 411
4 ] -2
3 2 1
(G)+1 -1 o)) 7
4 2
1 1 3
(3 3
-6
b;,~> 5+1 5 14
1 =1 at most, otherwise feasibility of cell (2, 2) is viclated.
Leti=1, then
diy iy
2 (3) | 4 1 (2)
®) 0 5
(1) -4 -3 | (1) -2
3 2 1
®) 0) oY) 9 4
-6 4 .2
1 (4) | 1 (3)] 3
®) 0 0
(-8) -2 (-6) -2 -6
Uj - 5 4 3
v -10 -8 -6

J

Z,=20+18+1+9=48,7Z,=-16-36-2-18=-71

01:=5, 013=1, 65,=3, 0= 0
Ry=56(1)@F)—-41(D-¢-"TH >0

25



26 ARORA AND KHURANA

Also Ry, R3, Ry 20 -~ R; 20 V(G j))eB
Hence the optimality condition is satisfied. Flow=5+6+1+3=15
Optimal objective function value = (48) (-71) = - 3408

Best Paradoxical Pair

To find the best paradoxical pair, we form the problem (P;). Applying
Klingsman and Russell’s approach and solving,

The optimal table is

uii’ LLZ,‘L
2 (1) | 4 1 (2) |4
0) (4) 0 0
(-2) -4 3] (-4 -2 -3
3 (-1) | 2 (1) |1 1) |3
(7 s
(-3) -6 | (1) -4 | (-7 (-2) -6
1 (1) |1 (2) |3 (-1) |8
(8
1 -3
-7 -2 | (-4) -2 1 (-3) -6 -6
3 4 3 0 (4)
(5) (5) 4
0 0
6 3 -6 3 0
v; ™ 3 4 3 4
g -6 -3 -6 -3

Z,=16+21+9+15+20+12=93,2,=-12-42-18-24-15-30=- 141
02:=0, 85,=0, B33=0

Ry =0(-3) (-1) - (-98) (-3) - (-141) (-1) = 279 — 141 > 0

Ry=0(1) 1) =93 (1) - (-141) (1) =- 93 + 141> 0

Ras=0(-3) (-1) — 93 (-3) - (-141) (-1) = 279 — 141 > 0

Also, R}, Ry3, Ry, Ry, Ry, Ryy>0 . R; 20 V(,j)eB

Flow, F* =28 > F°

also, Optimal objective function value is Z,Z, = (98) (-141) = - 13113
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and the optimal table is

2 4 1
®

4 -3 2

3 2 1
(12)

6 -4 2

1 1 3
(N
2 -2 6

and optimal solution is x,,= 9, X4, = 12, x53=7
So the best paradoxical pair is (-13113,28) and paradoxical range of flow 1s [14, 28].

*

]

To find a Paradoxical Solution for a specified flow F=20e [FO F
F = 20 is specified , we

In order to obtain the paradoxical solution when flow
solve the following problem:

CE,-¢
2 4 1
>4
4 -3 2
3 2 1
=7
8 -4 2
3 3 3
>3
2 -2 4
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We reduce it into a related transportation problem (RTP) such that

m

n
L ij’ bn+1 = Zai
j=1 =1
! —_ r — _ Fa
A2 = brL+2 - Z a; + Z bJ F
L J

Optimal solution is given in the next table:

’

uii’ u”'i«
2 (1) | 4 1 (2) | 4 -1y | M (-M)
4 3 -6
(-2) -4 LRSS -2 | (-3) -3 | (-M) M
3 2 2) |1 (2) | 3 M (-M)
6h) ® 3 6
6 | (D) 4| D o) 6 | (-M) M
1 (2) |1 (3) ] 3 3 (0) | M (-M)
@ 3 6
(-4) -2 (-2) -2 6| (0) -6 | (-M) M
3 4 3 M (3-M)Y | 0
(Y] e8] (] ® 3 .G
-6 -3 6| (-6-M) M 0
M (-M) | M (1-M) | M (-M) | o M (-3-M)
(® 0 o
(-M) M| (3-M) M| (-M) M 0| (6-M) M
v; = 0 1 0 0 3
v~ 0 3 0 0 6

Z,=65, Z,=-105; 6= 4, 0= 1
R, =4(-2) (1)—-65 (-2) - (-105) (1) > 0, R;3= 1 (-4) (2) — 65 (-4) - (-105) (2) > 0
also, R,20 V(,j)eB

. we have obtained the optimality condition and the optimal table is
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6

an

@)

Flow=5+11-+4=20

and optimal objective function value = (65) (-105) = - 6825

29
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