• Title/Summary/Keyword: objective algorithm

Search Result 2,780, Processing Time 0.036 seconds

Compact Design of a Slotless Type PMLSM Using Genetic Algorithm with 3D Space Harmonic Method

  • Lee Dong-Yeup;Kim Gyu-Tak
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.3
    • /
    • pp.262-266
    • /
    • 2005
  • In this paper, in order to enhance thrust of slotless type Permanent Magnet Linear Synchronous Motor, an optimal design is achieved by combining a genetic algorithm with 3D space harmonic method. In the case of multi-objective functions, the ratio of thrust/weight and thrust/volume are increased by $\7.56[%]l\;and\;7.98\[%]$, respectively. Thus, miniaturization and lightweight were realized at the same time.

Development of Fuzzy Control Algorithm for Multi-Objective Problem using Orthogonal Array and its Applications (직교배열표를 이용한 다목적 퍼지제어 알고리즘 개발 및 응용)

  • 김추호;박성호;이종원;변중남
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.63-68
    • /
    • 2000
  • In this paper, a control algorithm suitable for multi-objective control problems is proposed based on the orthogonal array which is normally used in statistics and industrial engineering. And a newly defined Nth-certainty factor is suggested, which can effectively exclude the less confident rules. The Nth-certainty factor is defined by the F-values of the ANOVA(analysis of variance) table. It is shown that the algorithm can be successfully adopted to the design of controller for an active magnetic bearing system.

  • PDF

A Study on the Modified FCM Algorithm using Intracluster (내부클러스터를 이용한 개선된 FCM 알고리즘에 대한 연구)

  • Ahn, Kang-Sik;Cho, Seok-Je
    • The KIPS Transactions:PartB
    • /
    • v.9B no.2
    • /
    • pp.202-214
    • /
    • 2002
  • In this paper, we propose a modified FCM (MFCM) algorithm to solve the problems of the FCM algorithm and the fuzzy clustering algorithm using an average intracluster distance (FCAID). The MFCM algorithm grants the regular grade of membership in the small size of cluster. And it clears up the convergence problem of objective function because its objective function is designed according to the grade of membership of it, verified, and used for clustering data. So, it can solve the problem of the FCM algorithm in different size of cluster and the FCAID algorithm in the convergence problem of objective function. To verify the MFCM algorithm, we compared with the result of the FCM and the FCAID algorithm in data clustering. From the experimental results, the MFCM algorithm has a good performance compared with others by classification entropy.

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

Optimal Controller Design for Single-Phase PFC Rectifiers Using SPEA Multi-Objective Optimization

  • Amirahmadi, Ahmadreza;Dastfan, Ali;Rafiei, Mohammadreza
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.104-112
    • /
    • 2012
  • In this paper a new method for the design of a simple PI controller is presented and it has been applied in the control of a Boost based PFC rectifier. The Strength Pareto evolutionary algorithm, which is based on the Pareto Optimality concept, used in Game theory literature is implemented as a multi-objective optimization approach to gain a good transient response and a high quality input current. In the proposed method, the input current harmonics and the dynamic response have been assumed as objective functions, while the PI controller's gains of the PFC rectifier (Kpi, Tpi) are design variables. The proposed algorithm generates a set of optimal gains called a Pareto Set corresponding to a Pareto Front, which is a set of optimal results for the objective functions. All of the Pareto Front points are optimum, but according to the design priority objective function, each one can be selected. Simulation and experimental results are presented to prove the superiority of the proposed design methodology over other methods.

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

Multi-Objective Optimization of a Dimpled Channel Using NSGA-II (NSGA-II를 통한 딤플채널의 다중목적함수 최적화)

  • Lee, Ki-Don;Samad, Abdus;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.113-116
    • /
    • 2008
  • This work presents numerical optimization for design of staggered arrays of dimples printed on opposite surfaces of a cooling channel with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization. As Pareto optimal front produces a set of optimal solutions, the trends of objective functions with design variables are predicted by hybrid multi-objective evolutionary algorithm. The problem is defined by three non-dimensional geometric design variables composed of dimpled channel height, dimple print diameter, dimple spacing and dimple depth to maximize heat transfer rate compromising with pressure drop. Twenty designs generated by Latin hypercube sampling were evaluated by Reynolds-averaged Navier-Stokes solver and the evaluated objectives were used to construct Pareto optimal front through hybrid multi-objective evolutionary algorithm. The optimum designs were grouped by k-mean clustering technique and some of the clustered points were evaluated by flow analysis. With increase in dimple depth, heat transfer rate increases and at the same time pressure drop also increases, while opposite behavior is obtained for the dimple spacing. The heat transfer performance is related to the vertical motion of the flow and the reattachment length in the dimple.

  • PDF

An Efficient PSO Algorithm for Finding Pareto-Frontier in Multi-Objective Job Shop Scheduling Problems

  • Wisittipanich, Warisa;Kachitvichyanukul, Voratas
    • Industrial Engineering and Management Systems
    • /
    • v.12 no.2
    • /
    • pp.151-160
    • /
    • 2013
  • In the past decades, several algorithms based on evolutionary approaches have been proposed for solving job shop scheduling problems (JSP), which is well-known as one of the most difficult combinatorial optimization problems. Most of them have concentrated on finding optimal solutions of a single objective, i.e., makespan, or total weighted tardiness. However, real-world scheduling problems generally involve multiple objectives which must be considered simultaneously. This paper proposes an efficient particle swarm optimization based approach to find a Pareto front for multi-objective JSP. The objective is to simultaneously minimize makespan and total tardiness of jobs. The proposed algorithm employs an Elite group to store the updated non-dominated solutions found by the whole swarm and utilizes those solutions as the guidance for particle movement. A single swarm with a mixture of four groups of particles with different movement strategies is adopted to search for Pareto solutions. The performance of the proposed method is evaluated on a set of benchmark problems and compared with the results from the existing algorithms. The experimental results demonstrate that the proposed algorithm is capable of providing a set of diverse and high-quality non-dominated solutions.

Multi-objective Optimization of Vehicle Routing with Resource Repositioning (자원 재배치를 위한 차량 경로계획의 다목적 최적화)

  • Kang, Jae-Goo;Yim, Dong-Soon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.2
    • /
    • pp.36-42
    • /
    • 2021
  • This paper deals with a vehicle routing problem with resource repositioning (VRPRR) which is a variation of well-known vehicle routing problem with pickup and delivery (VRPPD). VRPRR in which static repositioning of public bikes is a representative case, can be defined as a multi-objective optimization problem aiming at minimizing both transportation cost and the amount of unmet demand. To obtain Pareto sets for the problem, famous multi-objective optimization algorithms such as Strength Pareto Evolutionary Algorithm 2 (SPEA2) can be applied. In addition, a linear combination of two objective functions with weights can be exploited to generate Pareto sets. By varying weight values in the combined single objective function, a set of solutions is created. Experiments accomplished with a standard benchmark problem sets show that Variable Neighborhood Search (VNS) applied to solve a number of single objective function outperforms SPEA2. All generated solutions from SPEA2 are completely dominated by a set of VNS solutions. It seems that local optimization technique inherent in VNS makes it possible to generate near optimal solutions for the single objective function. Also, it shows that trade-off between the number of solutions in Pareto set and the computation time should be considered to obtain good solutions effectively in case of linearly combined single objective function.

Optimal Design of Water Supply System using Multi-objective Harmony Search Algorithm (Multi-objective Harmony Search 알고리즘을 이용한 상수도 관망 다목적 최적설계)

  • Choi, Young-Hwan;Lee, Ho-Min;Yoo, Do-Guen;Kim, Joong-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.29 no.3
    • /
    • pp.293-303
    • /
    • 2015
  • Optimal design of the water supply pipe network aims to minimize construction cost while satisfying the required hydraulic constraints such as the minimum and maximum pressures, and velocity. Since considering one single design factor (i.e., cost) is very vulnerable for including future conditions and cannot satisfy operator's needs, various design factors should be considered. Hence, this study presents three kinds of design factors (i.e., minimizing construction cost, maximizing reliability, and surplus head) to perform multi-objective optimization design. Harmony Search (HS) Algorithm is used as an optimization technique. As well-known benchmark networks, Hanoi network and Gyeonggi-do P city real world network are used to verify the applicability of the proposed model. In addition, the proposed multi-objective model is also applied to a real water distribution networks and the optimization results were statistically analyzed. The results of the optimal design for the benchmark and real networks indicated much better performance compared to those of existing designs and the other approach (i.e., Genetic Algorithm) in terms of cost and reliability, cost, and surplus head. As a result, this study is expected to contribute for the efficient design of water distribution networks.