Browse > Article
http://dx.doi.org/10.3745/KIPSTB.2002.9B.2.202

A Study on the Modified FCM Algorithm using Intracluster  

Ahn, Kang-Sik (Dept.of Control Instrumentation Engineering, Graduate School of Korea Maritime University)
Cho, Seok-Je (Dept. of Mechanical Information Engineering, Korea Maritime University)
Abstract
In this paper, we propose a modified FCM (MFCM) algorithm to solve the problems of the FCM algorithm and the fuzzy clustering algorithm using an average intracluster distance (FCAID). The MFCM algorithm grants the regular grade of membership in the small size of cluster. And it clears up the convergence problem of objective function because its objective function is designed according to the grade of membership of it, verified, and used for clustering data. So, it can solve the problem of the FCM algorithm in different size of cluster and the FCAID algorithm in the convergence problem of objective function. To verify the MFCM algorithm, we compared with the result of the FCM and the FCAID algorithm in data clustering. From the experimental results, the MFCM algorithm has a good performance compared with others by classification entropy.
Keywords
FCM algorithm; MFCM: Modified FCM a1gorithm; fuzzy Clustering; average intracluster distance; intracluster;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 J. C. Bezdek, 'Convergence Theory for Fuzzy c-Means : Counterexamples and Repairs,' IEEE Trans. Fuzzy Syst., September/October, 1987
2 T. A. Runkler and J. C. Bezdek, 'Alternating Cluster Estimation : A New Tool for Clustering and Function Approximation,' IEEE Trans. Fuzzy Syst., Vol.7, No.4, pp.377-393, 1999   DOI   ScienceOn
3 P. R. Kersten, 'Fuzzy Order Statistics and Their Application to Fuzzy Clustering,' IEEE Trans. Fuzzy Syst., Vol.7, No.6, pp.708-712, 1999   DOI   ScienceOn
4 J. C. Bezdek and M. M. Rrivedi, 'Low Level Segmentation of Aerial Images with Fuzzy Clustering,' IEEE Trans. Syst., Man, and Cybern, Vol.SMC-16, No.4, pp.589-598, 1986   DOI   ScienceOn
5 J. T. Tou and R. C. Gonzalez, Pattern Recognition Principles, Addison-Wesley Publishing Company, 1974
6 A. P. Witkin, 'Scale-Space Filtering,' Processing IJCAI-83, pp.1019-1022, 1983
7 R. Krishnapuram and J. M. Keller, 'A Possibilistic Approach to Clustering,' IEEE Trans. Fuzzy Syst., Vol.1, No.2, pp.98-110, 1993   DOI
8 N. Pal and J. Bezdek, 'On Cluster Validity for the Fuzzy C-Means Model,' IEEE Trans. Fuzzy Syst., Vol.3, No.3, pp.370-379, 1995   DOI   ScienceOn
9 R. Krishnapuram, H. Frigui, and O. Nasraoui, 'Fuzzy and Possibilistic Shell Clustering Algorithms and their Application to Boundary Detection and Surface Approximation,' IEEE Trans. Fuzzy Syst., Vol.3, No.1, pp.29-60. 1995   DOI   ScienceOn
10 J. C. Bezdek, 'A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms,' IEEE Trans. Patt. Anal. Machine Intell., Vol.PAMI-2, No.1, pp.1-8, 1980   DOI   ScienceOn
11 R. C. Duda, R. E. Hart, and D. G. Stork, Pattern Classification, 2nd Edition, John Willey & Sons, Inc., 2001
12 H. J. You, K. S. Ahn, and S. J. Cho, 'Image Segmentation Based on the Fuzzy Clustering Algorithm using Average Intracluster Distance,' 정보처리학회논문지, 제7권 제9호, pp.3029-3036, 2000   과학기술학회마을
13 오성권, 퍼지모델및 제어이론과 프로그램, 枝多 利, 1999