• Title/Summary/Keyword: object-based approach

Search Result 867, Processing Time 0.03 seconds

Active Contour Model Based Object Contour Detection Using Genetic Algorithm with Wavelet Based Image Preprocessing

  • Mun, Kyeong-Jun;Kang, Hyeon-Tae;Lee, Hwa-Seok;Yoon, Yoo-Sool;Lee, Chang-Moon;Park, June-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.100-106
    • /
    • 2004
  • In this paper, we present a novel, rapid approach for the detection of brain tumors and deformity boundaries in medical images using a genetic algorithm with wavelet based preprocessing. The contour detection problem is formulated as an optimization process that seeks the contour of the object in a manner of minimizing an energy function based on an active contour model. The brain tumor segmentation contour, however, cannot be detected in case that a higher gradient intensity exists other than the interested brain tumor and deformities. Our method for discerning brain tumors and deformities from unwanted adjacent tissues is proposed. The proposed method can be used in medical image analysis because the exact contour of the brain tumor and deformities is followed by precise diagnosis of the deformities.

Fast ROI Detection for Speed up in a CNN based Object Detection

  • Kim, Jin-Sung;Lee, Youhak;Lee, Kyujoong;Lee, Hyuk-Jae
    • Journal of Multimedia Information System
    • /
    • v.6 no.4
    • /
    • pp.203-208
    • /
    • 2019
  • Fast operation of a CNN based object detection is important in many application areas. It is an efficient approach to reduce the size of an input image. However, it is difficult to find an area that includes a target object with minimal computation. This paper proposes a ROI detection method that is fast and robust to noise. The proposed method is not affected by a flicker line noise that is a kind of aliasing between camera and LED light. Fast operation is achieved by using down-sampling efficiently. The accuracy of the proposed ROI detection method is 92.5% and the operation time for a frame with a resolution of 640 × 360 is 0.388msec.

A New Technique to Escape Local Minimum in Artificial Potential Field Based Path Planning

  • Park, Min-Gyu;Lee, Min-Cheol
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1876-1885
    • /
    • 2003
  • The artificial potential field (APF) methods provide simple and efficient motion planners for practical purposes. However, these methods have a local minimum problem, which can trap an object before reaching its goal. The local minimum problem is sometimes inevitable when an object moves in unknown environments, because the object cannot predict local minima before it detects obstacles forming the local minima. The avoidance of local minima has been an active research topic in the potential field based path planing. In this study, we propose a new concept using a virtual obstacle to escape local minima that occur in local path planning. A virtual obstacle is located around local minima to repel an object from local minima. We also propose the discrete modeling method for the modeling of arbitrary shaped objects used in this approach. This modeling method is adaptable for real-time path planning because it is reliable and provides lower complexity.

Development of Non-Contacting Automatic Inspection Technology of Precise Parts (정밀부품의 비접촉 자동검사기술 개발)

  • Lee, Woo-Sung;Han, Sung-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.6
    • /
    • pp.110-116
    • /
    • 2007
  • This paper presents a new technique to implement the real-time recognition for shapes and model number of parts based on an active vision approach. The main focus of this paper is to apply a technique of 3D object recognition for non-contacting inspection of the shape and the external form state of precision parts based on the pattern recognition. In the field of computer vision, there have been many kinds of object recognition approaches. And most of these approaches focus on a method of recognition using a given input image (passive vision). It is, however, hard to recognize an object from model objects that have similar aspects each other. Recently, it has been perceived that an active vision is one of hopeful approaches to realize a robust object recognition system. The performance is illustrated by experiment for several parts and models.

CAD-Based 3-D Object Recognition Using Hough Transform (Hough 변환을 이용한 캐드 기반 삼차원 물체 인식)

  • Ja Seong Ku;Sang Uk Lee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.9
    • /
    • pp.1171-1180
    • /
    • 1995
  • In this paper, we present a 3-D object recognition system in which the 3-D Hough transform domain is employed to represent the 3-D objects. In object modeling step, the features for recognition are extracted from the CAD models of objects to be recognized. Since the approach is based on the CAD models, the accuracy and flexibility are greatly improved. In matching stage, the sensed image is compared with the stored model, which is assumed to yield a distortion (location and orientation) in the 3-D Hough transform domain. The high dimensional (6-D) parameter space, which defines the distortion, is decomposed into the low dimensional space for an efficient recognition. At first we decompose the distortion parameter into the rotation parameter and the translation parameter, and the rotation parameter is further decomposed into the viewing direction and the rotational angle. Since we use the 3-D Hough transform domain of the input images directly, the sensitivity to the noise and the high computational complexity could be significantly alleviated. The results show that the proposed 3-D object recognition system provides a satisfactory performance on the real range images.

  • PDF

The Object-Oriented Design of the Product Structure Based on Options (Option을 고려한 객체지향형 Product Structure 설계)

  • Ko, Suk-Wan;Kim, Sunn-Ho;Jeong, Seok-Chan
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.24 no.3
    • /
    • pp.457-473
    • /
    • 1998
  • As a product structure or BOM(bill of material) of products is hierarchically structured, the design based on the concept of relational data base modeling causes low performances in data search or processing. For this reason, an object-oriented approach to designing a product structure is proposed in this paper. Using Rumbaugh's OMT (Object Modeling Technique) method, classes of parts, BOM structure, options, and models are defined and their class-relationship diagrams are proposed. For the representation of the BOM structure suitable for the object-oriented paradigm, a new data architecture called the BOM item class is suggested. It is expected that the proposed data structure ensures better reusability and expandability due to the modularity.

  • PDF

The Effect of Process Models on Short-term Prediction of Moving Objects for Autonomous Driving

  • Madhavan Raj;Schlenoff Craig
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.509-523
    • /
    • 2005
  • We are developing a novel framework, PRIDE (PRediction In Dynamic Environments), to perform moving object prediction (MOP) for autonomous ground vehicles. The underlying concept is based upon a multi-resolutional, hierarchical approach which incorporates multiple prediction algorithms into a single, unifying framework. The lower levels of the framework utilize estimation-theoretic short-term predictions while the upper levels utilize a probabilistic prediction approach based on situation recognition with an underlying cost model. The estimation-theoretic short-term prediction is via an extended Kalman filter-based algorithm using sensor data to predict the future location of moving objects with an associated confidence measure. The proposed estimation-theoretic approach does not incorporate a priori knowledge such as road networks and traffic signage and assumes uninfluenced constant trajectory and is thus suited for short-term prediction in both on-road and off-road driving. In this article, we analyze the complementary role played by vehicle kinematic models in such short-term prediction of moving objects. In particular, the importance of vehicle process models and their effect on predicting the positions and orientations of moving objects for autonomous ground vehicle navigation are examined. We present results using field data obtained from different autonomous ground vehicles operating in outdoor environments.

Enhanced Object Extraction Method Based on Multi-channel Saliency Map (Saliency Map 다중 채널을 기반으로 한 개선된 객체 추출 방법)

  • Choi, Young-jin;Cui, Run;Kim, Kwang-Rag;Kim, Hyoung Joong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.2
    • /
    • pp.53-61
    • /
    • 2016
  • Extracting focused object with saliency map is still remaining as one of the most highly tasked research area around computer vision for it is hard to estimate. Through this paper, we propose enhanced object extraction method based on multi-channel saliency map which could be done automatically without machine learning. Proposed Method shows a higher accuracy than Itti method using SLIC, Euclidean, and LBP algorithm as for object extraction. Experiments result shows that our approach is possible to be used for automatic object extraction without any previous training procedure through focusing on the main object from the image instead of estimating the whole image from background to foreground.

Set-theoretic multi-resolution approach to generic partial and background information-based object detection (집합기반 다해상도 접근을 통한 포괄적 정보를 이용한 물체탐지에 관한 연구)

  • Kim, Yang-Woo;Kim, Woon-Kyung
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1039-1040
    • /
    • 2008
  • Multi-resolution approach to object detection wherein all entities including the partial information and background knowledge are modeled in set-theoretic terms whereby associated processing are formulated via set-theoretic operations is investigated. The generic set-theoretic paradigm is then applied to particular problems of detecting malfunctions in semiconductor fabrication process wherein the computational- and storage- efficiencies as enabled by morphological signal processing further coupled with flexibilities enabled by multi-resolution approach leads to a scalable paradigm in which the desired performance can be obtained on-demand fashion.

  • PDF

Convolutional Neural Network-based Real-Time Drone Detection Algorithm (심층 컨벌루션 신경망 기반의 실시간 드론 탐지 알고리즘)

  • Lee, Dong-Hyun
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.4
    • /
    • pp.425-431
    • /
    • 2017
  • As drones gain more popularity these days, drone detection becomes more important part of the drone systems for safety, privacy, crime prevention and etc. However, existing drone detection systems are expensive and heavy so that they are only suitable for industrial or military purpose. This paper proposes a novel approach for training Convolutional Neural Networks to detect drones from images that can be used in embedded systems. Unlike previous works that consider the class probability of the image areas where the class object exists, the proposed approach takes account of all areas in the image for robust classification and object detection. Moreover, a novel loss function is proposed for the CNN to learn more effectively from limited amount of training data. The experimental results with various drone images show that the proposed approach performs efficiently in real drone detection scenarios.