DOI QR코드

DOI QR Code

Enhanced Object Extraction Method Based on Multi-channel Saliency Map

Saliency Map 다중 채널을 기반으로 한 개선된 객체 추출 방법

  • Received : 2015.08.20
  • Accepted : 2016.02.02
  • Published : 2016.02.25

Abstract

Extracting focused object with saliency map is still remaining as one of the most highly tasked research area around computer vision for it is hard to estimate. Through this paper, we propose enhanced object extraction method based on multi-channel saliency map which could be done automatically without machine learning. Proposed Method shows a higher accuracy than Itti method using SLIC, Euclidean, and LBP algorithm as for object extraction. Experiments result shows that our approach is possible to be used for automatic object extraction without any previous training procedure through focusing on the main object from the image instead of estimating the whole image from background to foreground.

영상으로부터 중요 객체를 구하는 Saliency Map은 현재 영상처리 분야에서 가장 활발한 연구 분야이다. 이와 관련한 여러 연구가 진행되어가고 있으나 Saliency Map의 객체를 추출하는 것이 어려운 상황이다. 본 논문에서는 제안하는 SLIC와 색상차, 영역간 거리, texture 정보를 이용하여 객체 추출하는 방법으로 Saliency Map을 개선하고자 한다. 실험결과는 본 논문에서 제안하는 방법을 통해 영상의 모든 영역이 아닌 중앙에 있는 영역을 중점으로 주요 객체를 추출하는 결과를 보였다.

Keywords

References

  1. Achanta, Radhakrishna. "Slic superpixels." Ecole Polytechnique Federal de Lausssanne (EPFL), Tech. Rep 2(3), 2010.
  2. Felke, P. Bruckschwaiger, M. Wegenkitt, "Implementaion and complexity of watershed-from-markers algorithm computed as a minimal cost forest", Computer Graphics Forum, 20(3), 26-35, 2001 https://doi.org/10.1111/1467-8659.00495
  3. T.Ojala, M.Pietikainen, and D.Harwood. "A comparative study of texture measures with classification based on feature distributions", Pattern Recognition vol.29,1996.
  4. L. Itti, C. Koch, and E. Nieber, "A Model of Saliency-Based Visual Attention for Rapid Scene Analysis", IEEE Trans. on Pattern Analysis and Machine Intelligence.(PAMI), pp.1254-1259, 1998.
  5. Dirk Walther and Christof Koch, "Modeling attention to salient proto-objects". Neural Networks 19, 1395-1407, 2006 https://doi.org/10.1016/j.neunet.2006.10.001
  6. Leen-Kiat Soh, Costas Tsatsoulis, "Texture analysis of SAR sea ice imagery using gray level co-occurrence matrices", IEEE Trans on Geoscience and Remote Sensing, vol. 37, no. 2, pp. 780-795, 1999 https://doi.org/10.1109/36.752194
  7. T. Ojala, M. Pietikainen, and T. Maenpaa, "Multiresolution gray-scale and rotation invariant texture classification with local binary patterns", IEEE Trans. PAMI, vol. 24, pp. 971-987, 2002. https://doi.org/10.1109/TPAMI.2002.1017623
  8. Berkeley Segmentation Dataset, http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
  9. Zhenhua Guo,and Lei Zhang "A Completed Modeling of Local Binary Pattern Operator for Texture Classification", IEEE Trans. on Image Processing, vol. 19, no. 6, pp. 1657-1663, 2010. https://doi.org/10.1109/TIP.2010.2044957
  10. T. Tuceryan and A. K. Jain, "Texture Analysis," The Handbook of Pattern Recognition and Computer Vision (2nd Edition), World Scientific Pub. Co., pp. 207-248, 1998
  11. T. Randen and J.H. Husy, "Filtering for texture classification: a comparative study", IEEE Trans. PAMI, vol. 21, pp. 291-310,1999. https://doi.org/10.1109/34.761261
  12. T. Ahonen, A. Hadid, and M. Pietikainen, "Face Recognition with Local Binary Patterns," ECCV 2004, LNCS 3021, pp. 469-181, 2004
  13. T. Ojala, M. Pietikainen and T. Maenpaa, "Gray Scale and Rotation Invariant Texture Classification with Local Binary Patterns'," Computer Vision-ECCV 2000, pp. 404-420, 2000
  14. uceryan M, Jain A K. Texture Analysis. Chen C H, Pau L F, Wang P S. Handbook of Pattern Recognition an Computer Vision. 2nd ed. Singapore: World Scientific Publishing Co., pp:207-248, 1998.
  15. Haralick R M, Shanmugam K, Dinstein I H., "Textural features for image classification". IEEE Trans.on SMC, 3(6):610-671,1973.
  16. Varma, M., Zisserman, A. "A statistical approach to material classification using image patch examplars", IEEE Trans. On Pattern Analysis and Machine Intelligence, vol. 31, no. 11, pp. 0162-8828, Nov. 2009.
  17. P. Mohanaiah, P. Sathyanarayana, and L. GuruKumar, "Image Texture Feature Extraction Using GLCM Approach," International Journal of Scientific and Research, Pub. Vol 3, Issue 5, pp. 1-5, May. 2013
  18. LBP Library for MATLAB, https://github.com/adikhosla/feature-extraction/tree/master/features
  19. Kyungwon Jeong, Nahyun Kim, Seoungwon Lee, and Joonki Paik, "Multi-Object Detection and Tracking Using Dual-Layer Particle Sampling", Journal of The Institute of Electronics and Information Engineers Vol. 51, NO. 9, pp. 2025-2033, Sep. 2014.
  20. Ki Tae Park, Jong Hyeok Kim, and Young Shik Moon, "Extraction of Attentive Objects Using Feature Maps", Journal of The Institute of Electronics and Information Engineers Vol. 43, NO. 5, pp. 425-434, September 2006.
  21. GBVS Algorithm for MATLAB, http://www.vision.caltech.edu/-harel/share/gbvs.php