• Title/Summary/Keyword: object features

Search Result 1,194, Processing Time 0.023 seconds

A Method for Improving Accuracy of Object Recognition and Pose Estimation by Using Kinect sensor (Kinect센서를 이용한 물체 인식 및 자세 추정을 위한 정확도 개선 방법)

  • Kim, Anna;Yee, Gun Kyu;Kang, Gitae;Kim, Yong Bum;Choi, Hyouk Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.1
    • /
    • pp.16-23
    • /
    • 2015
  • This paper presents a method of improving the pose recognition accuracy of objects by using Kinect sensor. First, by using the SURF algorithm, which is one of the most widely used local features point algorithms, we modify inner parameters of the algorithm for efficient object recognition. The proposed method is adjusting the distance between the box filter, modifying Hessian matrix, and eliminating improper key points. In the second, the object orientation is estimated based on the homography. Finally the novel approach of Auto-scaling method is proposed to improve accuracy of object pose estimation. The proposed algorithm is experimentally tested with objects in the plane and its effectiveness is validated.

Multiple Templates and Weighted Correlation Coefficient-based Object Detection and Tracking for Underwater Robots (수중 로봇을 위한 다중 템플릿 및 가중치 상관 계수 기반의 물체 인식 및 추종)

  • Kim, Dong-Hoon;Lee, Dong-Hwa;Myung, Hyun;Choi, Hyun-Taek
    • The Journal of Korea Robotics Society
    • /
    • v.7 no.2
    • /
    • pp.142-149
    • /
    • 2012
  • The camera has limitations of poor visibility in underwater environment due to the limited light source and medium noise of the environment. However, its usefulness in close range has been proved in many studies, especially for navigation. Thus, in this paper, vision-based object detection and tracking techniques using artificial objects for underwater robots have been studied. We employed template matching and mean shift algorithms for the object detection and tracking methods. Also, we propose the weighted correlation coefficient of adaptive threshold -based and color-region-aided approaches to enhance the object detection performance in various illumination conditions. The color information is incorporated into the template matched area and the features of the template are used to robustly calculate correlation coefficients. And the objects are recognized using multi-template matching approach. Finally, the water basin experiments have been conducted to demonstrate the performance of the proposed techniques using an underwater robot platform yShark made by KORDI.

Trends on Object Detection Techniques Based on Deep Learning (딥러닝 기반 객체 인식 기술 동향)

  • Lee, J.S.;Lee, S.K.;Kim, D.W.;Hong, S.J.;Yang, S.I.
    • Electronics and Telecommunications Trends
    • /
    • v.33 no.4
    • /
    • pp.23-32
    • /
    • 2018
  • Object detection is a challenging field in the visual understanding research area, detecting objects in visual scenes, and the location of such objects. It has recently been applied in various fields such as autonomous driving, image surveillance, and face recognition. In traditional methods of object detection, handcrafted features have been designed for overcoming various visual environments; however, they have a trade-off issue between accuracy and computational efficiency. Deep learning is a revolutionary paradigm in the machine-learning field. In addition, because deep-learning-based methods, particularly convolutional neural networks (CNNs), have outperformed conventional methods in terms of object detection, they have been studied in recent years. In this article, we provide a brief descriptive summary of several recent deep-learning methods for object detection and deep learning architectures. We also compare the performance of these methods and present a research guide of the object detection field.

카메라 디포커싱을 이용한 로보트의 시각 서보

  • 신진우;고국현;조형석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.559-564
    • /
    • 1994
  • Recently, a visual servoing for an eye-in-hand robot has become an interesting problem. A distance between a camera and a task object is very useful information for visual servoing. In the previous works for visual servoing, the distance can be obtained from the difference between a reference and a measured feature value of the object such as area on image plane. However, since this feature depends on the object, the reference feature value must be changed when other task object is taken. To overcome this difficulty, this paper presents a novel method for visual servoing. In the proposed method, a blur is used to obtain the distance. The blur, one of the most important features, depends on the focal length of camera. Since it is not affected by the change of object, the reference feature value is not changed although other task object is taken. In this paper, we show a relationship between the distance and the blur, and define the feature jacobian matrix based on camera defocusing to operate the robot. A series of experiments is performed to verify the proposed method.

  • PDF

Object -Oriented Simulation Approach for AGV Systems (AGV 시스템에 대한 객체지향 시뮬레이션)

  • 김경섭
    • Journal of the Korea Society for Simulation
    • /
    • v.2 no.1
    • /
    • pp.107-124
    • /
    • 1993
  • This paper presents an object -oriented simulation approach. AgvTalk, to design and analze AGV system configuration and control. Smalltalk-80 is used as an implementation language in AgvTalk. AgvTalk includes 25 object classes and more than 300 object methods in its library. Compared to general purpose simulation languages. AgvTalk provides several important benefits. First, the hierarchical features and modularity create possibilities for the extension and reuse of simulation object components. This extensibility and reusability provide more flexible modeling capabilities for simulation of many alternative AGV systems. Second, detailed behavior of each object in the AGV system can be modeled easily and exactly in AgvTalk because there are no limiting modeling constructs. Third, AgvTalk provides a user -friendly simulation modeling environment through the MVC -triad of Smalltalk-80.

  • PDF

Multi-level Cross-attention Siamese Network For Visual Object Tracking

  • Zhang, Jianwei;Wang, Jingchao;Zhang, Huanlong;Miao, Mengen;Cai, Zengyu;Chen, Fuguo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3976-3990
    • /
    • 2022
  • Currently, cross-attention is widely used in Siamese trackers to replace traditional correlation operations for feature fusion between template and search region. The former can establish a similar relationship between the target and the search region better than the latter for robust visual object tracking. But existing trackers using cross-attention only focus on rich semantic information of high-level features, while ignoring the appearance information contained in low-level features, which makes trackers vulnerable to interference from similar objects. In this paper, we propose a Multi-level Cross-attention Siamese network(MCSiam) to aggregate the semantic information and appearance information at the same time. Specifically, a multi-level cross-attention module is designed to fuse the multi-layer features extracted from the backbone, which integrate different levels of the template and search region features, so that the rich appearance information and semantic information can be used to carry out the tracking task simultaneously. In addition, before cross-attention, a target-aware module is introduced to enhance the target feature and alleviate interference, which makes the multi-level cross-attention module more efficient to fuse the information of the target and the search region. We test the MCSiam on four tracking benchmarks and the result show that the proposed tracker achieves comparable performance to the state-of-the-art trackers.

Memory Propagation-based Target-aware Segmentation Tracker with Adaptive Mask-attention Decision Network

  • Huanlong Zhang;Weiqiang Fu;Bin Zhou;Keyan Zhou;Xiangbo Yang;Shanfeng Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.9
    • /
    • pp.2605-2625
    • /
    • 2024
  • Siamese-based segmentation and tracking algorithms improve accuracy and stability for video object segmentation and tracking tasks simultaneously. Although effective, variability in target appearance and background clutter can still affect segmentation accuracy and further influence the performance of tracking. In this paper, we present a memory propagation-based target-aware and mask-attention decision network for robust object segmentation and tracking. Firstly, a mask propagation-based attention module (MPAM) is constructed to explore the inherent correlation among image frames, which can mine mask information of the historical frames. By retrieving a memory bank (MB) that stores features and binary masks of historical frames, target attention maps are generated to highlight the target region on backbone features, thus suppressing the adverse effects of background clutter. Secondly, an attention refinement pathway (ARP) is designed to further refine the segmentation profile in the process of mask generation. A lightweight attention mechanism is introduced to calculate the weight of low-level features, paying more attention to low-level features sensitive to edge detail so as to obtain segmentation results. Finally, a mask fusion mechanism (MFM) is proposed to enhance the accuracy of the mask. By utilizing a mask quality assessment decision network, the corresponding quality scores of the "initial mask" and the "previous mask" can be obtained adaptively, thus achieving the assignment of weights and the fusion of masks. Therefore, the final mask enjoys higher accuracy and stability. Experimental results on multiple benchmarks demonstrate that our algorithm performs outstanding performance in a variety of challenging tracking tasks.

Content-based Image Retrieval by Extraction of Specific Region (특징 영역 추출을 통한 내용 기반 영상 검색)

  • 이근섭;정승도;조정원;최병욱
    • Proceedings of the IEEK Conference
    • /
    • 2001.06c
    • /
    • pp.77-80
    • /
    • 2001
  • In general, the informations of the inner image that user interested in are limited to a special domain. In this paper, as using Wavelet Transform for dividing image into high frequency and low frequency, We can separate foreground including many data. After calculating object boundary of separated part, We extract special features using Color Coherence Vector. According to results of this experiment, the method of comparing data extracting foreground features is more effective than comparing data extracting features of entire image when we extract the image user interested in.

  • PDF

3D Object Recognition for Localization of Outdoor Robotic Vehicles (실외 주행 로봇의 위치 추정을 위한 3 차원 물체 인식)

  • Baek, Seung-Min;Kim, Jae-Woong;Lee, Jang-Won;Zhaojin, Lu;Lee, Suk-Han
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.200-204
    • /
    • 2008
  • In this paper, to solve localization problem for out-door navigation of robotic vehicles, a particle filter based 3D object recognition framework that can estimate the pose of a building or its entrance is presented. A particle filter framework of multiple evidence fusion and model matching in a sequence of images is presented for robust recognition and pose estimation of 3D objects. The proposed approach features 1) the automatic selection and collection of an optimal set of evidences 2) the derivation of multiple interpretations, as particles representing possible object poses in 3D space, and the assignment of their probabilities based on matching the object model with evidences, and 3) the particle filtering of interpretations in time with the additional evidences obtained from a sequence of images. The proposed approach has been validated by the stereo-camera based experimentation of 3D object recognition and pose estimation, where a combination of photometric and geometric features are used for evidences.

  • PDF

Object Feature Extraction and Matching for Effective Multiple Vehicles Tracking (효과적인 다중 차량 추적을 위한 객체 특징 추출 및 매칭)

  • Cho, Du-Hyung;Lee, Seok-Lyong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.11
    • /
    • pp.789-794
    • /
    • 2013
  • A vehicle tracking system makes it possible to induce the vehicle movement path for avoiding traffic congestion and to prevent traffic accidents in advance by recognizing traffic flow, monitoring vehicles, and detecting road accidents. To track the vehicles effectively, those which appear in a sequence of video frames need to identified by extracting the features of each object in the frames. Next, the identical vehicles over the continuous frames need to be recognized through the matching among the objects' feature values. In this paper, we identify objects by binarizing the difference image between a target and a referential image, and the labelling technique. As feature values, we use the center coordinate of the minimum bounding rectangle(MBR) of the identified object and the averages of 1D FFT(fast Fourier transform) coefficients with respect to the horizontal and vertical direction of the MBR. A vehicle is tracked in such a way that the pair of objects that have the highest similarity among objects in two continuous images are regarded as an identical object. The experimental result shows that the proposed method outperforms the existing methods that use geometrical features in tracking accuracy.