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Abstract 

 
Siamese-based segmentation and tracking algorithms improve accuracy and stability for video 
object segmentation and tracking tasks simultaneously. Although effective, variability in target 
appearance and background clutter can still affect segmentation accuracy and further influence 
the performance of tracking. In this paper, we present a memory propagation-based target-
aware and mask-attention decision network for robust object segmentation and tracking. 
Firstly, a mask propagation-based attention module (MPAM) is constructed to explore the 
inherent correlation among image frames, which can mine mask information of the historical 
frames. By retrieving a memory bank (MB) that stores features and binary masks of historical 
frames, target attention maps are generated to highlight the target region on backbone features, 
thus suppressing the adverse effects of background clutter. Secondly, an attention refinement 
pathway (ARP) is designed to further refine the segmentation profile in the process of mask 
generation. A lightweight attention mechanism is introduced to calculate the weight of low-
level features, paying more attention to low-level features sensitive to edge detail so as to 
obtain segmentation results. Finally, a mask fusion mechanism (MFM) is proposed to enhance 
the accuracy of the mask. By utilizing a mask quality assessment decision network, the 
corresponding quality scores of the “initial mask” and the “previous mask” can be obtained 
adaptively, thus achieving the assignment of weights and the fusion of masks. Therefore, the 
final mask enjoys higher accuracy and stability. Experimental results on multiple benchmarks 
demonstrate that our algorithm performs outstanding performance in a variety of challenging 
tracking tasks. 
 
 
Keywords: Object Segmentation and Tracking, Siamese Network, Mask Propagation, Mask 
evaluation, Attention Mechanism. 
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1. Introduction 

Video object tracking (VOT), a fundamental but challenging task in computer vision, 
typically aims to locate and track an object of interest across frames in a video sequence, using 
a bounding box in the first frame. In a broad extent of applications, like human-computer 
interaction [1], automatic vehicles [2], traffic management [3], and video surveillance [4], 
object tracking is inevitable. Given the unknown and frequent changes in objects and their 
surroundings, developing a tracker that can effectively handle changes in target appearance, 
eliminate background clutter, and maintain real-time tracking is a highly challenging task in 
computer vision. 

Various tracking methods based on deep convolutional neural networks have been 
proposed in recent years. One mainstream methodology, the template-matching method, 
addresses VOT as a similarity-matching problem between an initial target template image and 
the search images. Siamese trackers [5, 6, 7, 8, 9] are among the most commonly used 
template-matching methods. Since these approaches typically fail to update the template, they 
are poorly capable of resisting changes in target appearance resulting from factors like 
occlusions, non-rigid deformations, etc. In addition, these trackers adopt box representation, 
and much background information is introduced by the predefined spatial limit of the box 
representation. 

To address the issues mentioned above, although some trackers [10, 11] have implemented 
advanced template updating mechanisms to enhance their robustness, these methods can be 
computationally expensive and may hinder real-time tracking. Additionally, the customized 
updating strategies [12, 13, 14] used by these trackers introduce hyperparameters that require 
tricky tuning, which can be a challenging task. Meanwhile, in order to suppress background 
interference, some approaches [15, 16] are equipped with temporal context before enhancing 
the target feature and inhibiting background information. Some Siamese trackers [17, 18, 19, 
20] utilize the characteristic of cosine windows, which emphasize the center area and reduce 
the impact of the target on the image edge. The above method can help reduce boundary effects 
but is unable to make full use of the target information and further improve tracking 
performance. 

To take full advantage of the information of the target, we introduce the binary mask of the 
target and apply the segmentation algorithm to the tracking. The video object segmentation 
(VOS) task is intended to estimate the segmentation of specific object instances in the video 
sequence. The VOS focuses on analyzing large objects that have been observed within 100 
frames, which produces pixel-level segmentation results 𝑖𝑖. 𝑒𝑒. binary masks. In essence, VOS 
is capable of offering a more accurate assessment of the state of an object. The solution to the 
VOS task can be applied to the VOT task due to its detailed representation. 

Recent research has focused on bridging the gap between VOT and VOS through the 
development of approaches that integrate segmentation algorithms into tracking. Semantic-
aware tracker [21] offers a federated approach to integrate semantics into tracking. A pre-
existing image segmentation network, such as Box2Seg [22], serves to transform the semantic 
information within the target bounding box into a pixel-level semantic segmentation result. 
The bounding box is generated by a tracking model [23], which can become less accurate as 
errors accumulate, leading to incorrect segmentation. Additionally, running the approach in 
real-time is challenging as the image segmentation network requires significant computation. 
To reduce computational costs, SiamMask [5] and D3S [24] provide a combined segmentation 
and tracking network, containing a segmentation branch to binary a mask by refining the 
features resulting from the backbone network. Nevertheless, the methodologies remain 
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contingent upon the initial representation of the object and fail to account for the annotated 
mask. Hence, they may prove inadequate in addressing tracking challenges such as appearance 
variations and occlusions across the video sequence. This motivates us to explore a mask 
propagation-based tracking algorithm that fully mines the rich historical mask information 
available of the object. Moreover, background interference beyond the bounding boxes 
possibly leads to inaccurate segmentation results without spatial constraints, causing the 
network not to distinguish the target from background clutter with similar semantics. 

In this work, we propose a mask propagation-based attention method to learn to read 
relevant information from historical frames and constrain the background interference in 
backbone features. In particular, the mask propagation-based attention module (MPAM) 
produces target attention maps by searching for a memory bank (MB), which stores features 
(addresses) and binary masks (values) of the first frame and the previous frame. We can reduce 
the negative effects of background noise by utilizing the attention maps to enhance the features 
of  𝑡𝑡-th frame. In addition, we design an attention refinement pathway (ARP) to further refine 
the segmentation profile and weaken the effect of background interference. It merges different 
resolution features with attention refinement modules to generate the corresponding mask. To 
further enhance the accuracy of the mask, we propose a mask fusion mechanism (MFM) to 
evaluate the importance of different masks. It can obtain the corresponding mask quality score 
by a quality evaluation net, which is used as the fusion ratio for generating a reliable mask. 

Summarily, four main contributions are made by this work. 
 

• We construct a mask propagation-based attention module (MPAM) for exploring the 
inherent correlation among image frames, which can mine relevant mask information from 
historical frames. Target attention maps are produced to highlight the target region on 
backbone features, thus relieving the adverse effects of background clutter.  

• An attention refinement pathway (ARP) is designed to further refine the segmentation 
profile in the process of mask generation. It pays more attention to the low-level features 
sensitive to edge detail and enhances target characterization. 

• To obtain a more accurate mask, the mask fusion mechanism (MFM) is proposed. By 
using a quality assessment network, corresponding quality scores of the “initial mask” and the 
“previous mask” can be obtained to distinguish their significance, thus achieving the 
assignment of weights and the fusion of masks. Benefiting from this approach, the final mask 
enjoys higher accuracy and stability. 

• Comprehensive analysis and experiments on OTB100, VOT2016, TC128, and UAV123 
tracking benchmarks show that our method performs outstanding performance in a variety of 
challenging tracking tasks. 

2. Related Work 

2.1 Siamese Network-based Tracking 
Recently, the Siamese network-based tracking algorithm offers an excellent balance between 
efficiency and performance [25]. There are two inputs in a Siamese tracker, a target template 
at the first frame, and a search region within subsequent frames. The tracker aims to learn a 
similarity mapping of the two inputs by localizing the target template in the search regions [9]. 
SiamFC [26] applies a pre-trained backbone network to maximize object-background 
discrimination by cross-correlation operations between the target templates and the search 
regions. Following the idea of SiamFC, several multi-stage Siamese extensions have been 
developed to enhance tracking performance. The Siamese Region Proposal Network 



 2608     Huanlong Zhang et al.: Memory Propagation-based Target-aware Segmentation Tracker with Adaptive Mask-attention 
Decision Network  

(SiamRPN) [17] utilizes region proposal techniques to improve the efficiency and accuracy of 
object tracking. Based on SiamRPN, the work of [27] employs a distractor-aware module, and 
data augmentation to suppress the influence of distractors on the tracking process and use a 
local-to-global strategy to redetect the target for long-term tracking in DaSiamRPN. As an 
improved version of the original SiamRPN algorithm for visual object tracking, the main 
improvement of SiamRPN++ [7] is the utilization of a deeper and more complex network 
architecture, which includes multiple residual blocks and a spatial-aware attention mechanism 
to better capture the spatial context of the target object. SiamMask [5] is the first algorithm to 
introduce segmentation to the tracker. It adds a mask branch to SiamRPN to predict the object 
mask in real time and generates a box from the segmentation result. Considering that only a 
single-channel response map lacking correlation features is generated in [26], SiamCAR [9] 
generates a multi-channel response map using a depth-wise correlation layer, which consists 
of multiple single-channel response maps folded along the channel dimension. Another 
architecture very similar to SiamCAR, SiamBAN [6] takes a unified FCN classification and 
regression bounding box to accurately estimate the scale and aspect ratio of the target. These 
Siamese networks are poorly adapted to changes in target appearance caused by occlusions or 
non-rigid deformations since they usually do not update the template. Moreover, the box 
representation adopted by these trackers introduces a lot of background information due to the 
predefined spatial limit, which makes visual tracking very difficult because of the presence of 
distractors and frequent changes in appearance. Our algorithm solves these problems by 
introducing the mask information of historical frames into the Siamese network.  

2.2 Segmentation-based Tracking 
In Semi-supervised video object segmentation (SVOS), the initial frame provides ground truth 
annotations, which are used to identify the objects to be automatically segmented from the 
subsequent frames. The representative SVOS approaches, namely matching-based methods 
can be divided into three categories: pixel-level matching [28, 29, 30] and region-of-interest 
matching [31, 32, 33], and mask propagation‑based techniques [34, 35, 36], which explore the 
inherent correlation among image frames by propagating the segmented masks of the previous 
frames to the subsequent frame.  

Video object segmentation and tracking can be integrated to effectively address their tasks 
at the same time and improve the accuracy and stability of the tracking process. Recently, 
several researchers have combined tracking and semi-supervised video object segmentation 
using offline and online CNN-based methods [5, 37] and demonstrated excellent performance 
in their results. In the work of [5], a Siamese network is proposed to predict bounding boxes, 
object scores, and binary masks simultaneously. Based on matching features extracted from 
the first frame, D3S [24] conducts segmentation, which improves segmentation accuracy and 
speeds up processing. Nevertheless, these methods still use only the first frame as a template 
to create a model, resulting in inadequate performance when faced with difficulties such as 
changes in appearance. In this study, we leverage a propagation method and acquire the ability 
to extract pertinent information from past frames. 

2.3 Attention Mechanism 
As deep learning advances, the applications of attention mechanisms are becoming more and 
more diverse, with crucial implications for human perception [38]. Some works use the 
attention mechanism for classification [39], detection [40], tracking [41], and segmentation 
[42]. By integrating spatial and channel attention sequentially, CBAM [43] determines where 
and what to focus on according to cross-channel and spatial correlations. A novel non-local 
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network is presented in [44] which incorporates self-attention into computer vision, resulting 
in significant success in object detection and video understanding. In object tracking, SiamAtt 
[41] applies self-attention mechanisms to improve the target estimation based on a weight 
fusion of the classification and attention branch scores. However, the method has difficulty 
dealing with frequent changes in the appearance of the target. LANet [42] proposes two 
modules for enhancing the representation of features based on the exploitation of local 
attention, bridging the high-level and low-level features gap. Xiao et al. [45] proposed an 
online updated Siamese-block attention network for augmenting target representations, 
addressing the problem of occlusion and change in tracking. Several attention mechanisms can 
also be applied to segmentation, such as OCNet [46], using a self-attention-affected object 
context pooling mechanism, Expectation-Maximization Attention (EMANet) [47], Split-
Attention Networks (ResNet) [48], and Height-driven Attention Networks [49]. 

Most attention modules currently generate weight maps using a convolution layer or self-
attention mechanism that solely relies on the feature itself, which does not take into account 
the specific target being attended to. Conversely, we incorporate both visual features and pixel-
wise mask information and diffuse temporal information of the target, resulting in a weight 
map that is more specific and focused on the object of interest. 

3. Method Description 
This section provides a comprehensive overview of our proposed segmentation tracker. The 
section is subdivided into four parts, beginning with a general introduction to the motivation 
and architecture of the network. Next, we describe the implementation of our mask 
propagation-based attention module (MPAM), followed by a detailed explanation of the 
concatenate attention refinement pathway (ARP). Finally, we discuss the mask fusion 
mechanism (MFM), which is used to generate a reliable mask and obtain a bounding box. The 
complete tracking process is depicted in Fig. 1. 

3.1 Framework Overview 
The framework we propose is specifically designed to tackle complex segmentation and 
tracking challenges. It comprises three main components: a mask propagation-based attention 
module (MPAM), an attention refinement pathway (ARP), and a mask fusion mechanism 
(MFM). To begin with, our framework utilizes the Siamese network SiamMask [5] for object 
tracking, which is a well-established technique in the field. As is typical in this type of network, 
the template 𝑧𝑧 with the size of 127 × 127 is a cropped image centered in the target of the first 
frame and the search region 𝑥𝑥 with the size of 255 × 255 is another larger cropped image 
centered in the predicted target location in the previous frame. Then, a dense response map is 
calculated through a depth-wise crossing-correlation operation of two extracted features. In 
addition to establishing two branch networks to compute the classification score and location 
regression for a set of 𝑘𝑘  anchor boxes encoded in a region, a mask branch is proposed to form 
a two-task network for both segmentation and tracking in SiamMask. It is a three-branch 
network to generate the classification score, location regression, and binary mask. The anchor 
box with the highest score will be selected to form a new box through its corresponding mask 
as the tracking result. 
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Fig. 1. Architecture of the proposed network. 

 
Based on SiamMask, in the first stage, the block4 feature (as shown in Fig. 1) extracted by 

the backbone network is fed to the mask propagation-based attention module (MPAM) for 
generating attention maps with target awareness (see Sect.3.2). Next, the block4 feature is 
heightened by the attention maps and used to perform depth correlation operation with 
template features to a reliable dense response. Then the second stage, a 1 × 1 × 256 response 
bar is employed as the input in the attention refinement pathway (ARP). The ARP (see Sect.3.3) 
uses tree attention refinement modules consisting of upsampling layers and skip connections 
to produce a more accurate segmentation mask. In MPAM, since employing the method of 
mask propagation, we can get two masks after the above two stages, which are input into the 
mask fusion mechanism (MFM) intending to get a robust mask (see Sect.3.4). Considering the 
second strategy (𝑖𝑖. 𝑒𝑒. rotated minimum bounding rectangle) in SiamMask, a robust binary 
mask can be used to generate a bounding box as the tracking result. 

3.2 Mask Propagation-based Attention Module (MPAM) 
Only a bounding box of the target is needed to be input in the first frame in SiamMask and the 
segmentation can be done for the following frames. It does not consider using the predicted 
mask information in the previous frames but only uses the bounding box in the first frame as 
the template. Therefore, we consider a mask propagation method to better adapt to target 
changes during tracking. Meanwhile, the attention maps are generated to constrain the 
background clutter in the backbone network features, guiding the tracker to concentrate on the 
most informative part of the current frame. We first detail how to build the history frame mask 
set (𝑖𝑖. 𝑒𝑒.  Memory Bank), and then demonstrate how the Memory Bank (MB) can be used to 
predict attention maps and how to conduct the history information to the current frame.  
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3.2.1 Build Memory Bank (MB) 
The MB can be viewed as an ordered set that consists of address-value pairs, where each 
address corresponds to a unique value. In other words, each element in the set is a tuple 
(address, value), where the address is reference features 𝐴𝐴 ∈  𝑅𝑅𝐻𝐻×𝑊𝑊×𝐶𝐶 stored in a memory 
bank and the value is corresponding pixel-wise foreground probabilities (binary masks)  𝑉𝑉 ∈
𝑅𝑅𝐻𝐻×𝑊𝑊×1 , where 𝐻𝐻 is the height, 𝑊𝑊 is the width, and 𝐶𝐶 is the feature dimension. To ensure 
that our module can run efficiently with limited memory resources, we avoid storing 
intermediate features and results. The first frame and the previous frame have a relatively large 
impact on the current frame. The target mask of the first frame can extract the most reliable 
appearance and position information, and the mask of the previous frame has the motion state 
of the target. We simply construct the MB with the first frame and the previous frame (𝑖𝑖. 𝑒𝑒. 
𝑡𝑡 − 1 frame). Therefore, the mask generated in the current frame usually has higher accuracy 
and can better represent the location and shape of the target. 

Specifically, based on the ground truth bounding box presented in the first frame, a feature 
map of size 𝐻𝐻1 × 𝑊𝑊1 × 𝐶𝐶 is obtained by passing the template 127 × 127 × 3 cropped in the 
first frame through a backbone network and a 1 × 1 convolution layer. In our module, 𝐻𝐻1 =
𝑊𝑊1 = 15, 𝐶𝐶 = 256. Here, subscript 1 denotes the “first frame”. Given that the first frame of a 
video does not have an annotated mask, we first input the template and the search region 
cropped on the first frame, which is input into the original SiamMask algorithm to get the 
predicted mask as the pseudo annotated mask. The corresponding mask has the same spatial 
size 𝐻𝐻1 × 𝑊𝑊1 × 1. At this point, the size of the MB equals 𝐻𝐻1 ×𝑊𝑊1. Again, by executing our 
proposed framework, we can get the object feature and binary mask for each frame with the 
same size as the first frame, 𝐻𝐻𝑡𝑡−1 = 𝑊𝑊𝑡𝑡−1 = 15, 𝐶𝐶 = 256. The second address-value pair of 
MB is dynamically updated with the 𝑡𝑡 − 1 frame object feature and predicted mask.  

3.2.2 Attention Maps 
To generate the attention map of a feature, the MB is queried with the backbone network 
output feature of the current frame. Concretely, in the 𝑡𝑡  -th frame, the search region 
255 × 255 × 3 cropped in the 𝑡𝑡 -th frame is passed into the backbone network next to a 
1 ×  1 convolution layer, getting feature map 𝐹𝐹𝑡𝑡  ∈  𝑅𝑅𝐻𝐻𝑡𝑡 ×𝑊𝑊𝑡𝑡 ×𝐶𝐶 . Now, 𝐻𝐻𝑡𝑡 = 𝑊𝑊𝑡𝑡 = 31, 𝐶𝐶 =
256. Here, subscript  𝑡𝑡  denotes the “𝑡𝑡-th frame”. Based on the transductive model [36], an 
effective pixel-based similarity measure is required to be learned online in a video sequence. 
In the feature map  𝐹𝐹𝑡𝑡  , an attention value is attached to each spatial pixel  𝑓𝑓𝑖𝑖  ∈  𝑅𝑅1 ×1 ×256, 
which is decided by its similarity to the addresses in the MB. This similarity is calculated 
using the dot product operation between the embedding and each address. 

𝑠𝑠𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑖𝑖 ∙ 𝑎𝑎𝑖𝑖                                                               (1) 
Where ∙ represents dot product, 𝑠𝑠𝑖𝑖𝑖𝑖 indicates the similarity between 𝑓𝑓𝑖𝑖 and 𝑎𝑎𝑖𝑖 , 𝑓𝑓𝑖𝑖  ∈ 𝐹𝐹𝑡𝑡 and 

𝑎𝑎𝑖𝑖 ∈  𝐴𝐴 are the spatial embedding of the feature map 𝐹𝐹𝑡𝑡 and an address in MB. As a result, all 
embeddings of 𝐹𝐹𝑡𝑡 are similar to one of the addresses in MB, so 

𝑆𝑆 =  𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑎𝑎𝑥𝑥(𝑅𝑅(𝐹𝐹𝑡𝑡)  ∗  𝑅𝑅(𝐴𝐴1))                                              (2) 
Where ∗ indicates tensor multiplication and 𝑅𝑅 represents the reshape operation. The shape 

of 𝑆𝑆, 𝑅𝑅(𝐹𝐹𝑡𝑡) and 𝑅𝑅(𝐴𝐴1) is 𝐻𝐻𝑡𝑡𝑊𝑊𝑡𝑡 × 𝐻𝐻1𝑊𝑊1, 𝐻𝐻𝑡𝑡𝑊𝑊𝑡𝑡 × 𝐶𝐶 , 𝐶𝐶 × 𝐻𝐻1𝑊𝑊1 , respectively. The resulting 
matrix 𝑆𝑆 is used to generate the attention map 𝑀𝑀, as shown in (3). 

𝑀𝑀 =  𝑆𝑆 ∗  𝑉𝑉1                                                             (3) 
The 𝑀𝑀 quantifies the likelihood that a specific spatial location in 𝐹𝐹𝑡𝑡 will be the target of 

attention. Afterwards, an element-wise product is performed between 𝐹𝐹𝑡𝑡 and 𝑀𝑀 to enhance the 
feature, which highlights the most relevant features for the target. 
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𝐹𝐹𝑡𝑡′ = 𝐹𝐹𝑡𝑡 ∗ 𝑀𝑀                                                               (4) 
Since the foreground pixels have higher attention values, they will be underlined, whereas 

the background pixels will be suppressed. 

3.2.3 Mask Propagation 
As shown in the above operation, the first frame is subjected to a feature-based similarity 
metric with the current frame (𝑡𝑡-th frame), and the (𝑡𝑡 − 1)-th frame is also performed with the 
current frame to generate another weighted attention map containing historical information, 
which is weighted and fused with the features of the current frame, respectively. As described 
in the process above, we use a mask propagation approach to pass pixel labels from sampled 
history frames to the current frame based on feature similarity metric in an embedding space. 
The purpose of enhancing the target features and learning the target appearance changes are 
achieved, while also weakening the background information around the target. 

3.3 Attention Refinement Pathway (ARP) 
Similar to SiamMask [5], we follow the idea of [50], generating masks by flattening 
representations of objects. This representation corresponds to a 1 × 1 × 256 response bar, one 
of a 17 × 17 × 256 response map, which results from depth-wise cross-correlation. 

Since the network  ℎ𝜑𝜑 for segmentation task is based on two 1 × 1 convolutional layers 
with 256 and 632 channels, respectively. This enables each 1 × 1 × 256 response bar can 
contain the information of a candidate region. Then we employ the strategy described in [66], 
which combines multiple refinement modules consisting of multiple upsampling layers and 
skip connections, merging different resolution features to generate the corresponding mask. 
To further refine the segmentation profile in the process of mask generation, an ECA (Efficient 
Channel Attention) module [67] is added to refinement modules to encode enhanced low-
resolution features (Fig. 2), which pays more attention to the low-level features sensitive to 
edge detail by calculating attention weights. Thus more precise object masks are produced by 
improved refinement modules with attention. 

Fig. 1 shows the detailed structure of the attention refinement pathway, which explicitly 
shows the stack of improved refinement modules for generating the final mask. With the same 
feature extraction network, template z and search region x are processed to get  𝑓𝑓𝜃𝜃(z) and 
𝑓𝑓𝜃𝜃(x), and they are depth-wise cross-correlated to obtain the features  𝑔𝑔𝜃𝜃(z, x)  , where we 
refer to the 𝑛𝑛 -th response map with  𝑔𝑔𝜃𝜃𝑛𝑛(z, x)  ∈ 𝑅𝑅1×1×𝑑𝑑  . The feature maps extracted from the 
third, second, and first layers in the Siamese network in 𝑥𝑥 are represented as 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓3, 
respectively. The feature  𝑔𝑔𝜃𝜃𝑛𝑛(z, x) is deconvoluted and gradually fused with 𝑓𝑓1, 𝑓𝑓2, and 𝑓𝑓3 , 
and upsampled to get mask representations with different resolutions until a final mask of 
127 × 127 × 1 is obtained. 

Fig. 2 illustrates the structure of the refinement module, which includes the detailed fusion 
with shallow features and the upsampling process. In this paper, with the ECA module, low-
level features with rich edge details of 𝑓𝑓2 can be highlighted. The feature map 𝑓𝑓2 is used to 
output a new feature 𝑓𝑓2′  via the ECA module, two convolutional layers, and two non-linear 
layers sequentially. The mask representation 𝑒𝑒2 is utilized to obtain a new mask representation 
𝑒𝑒2′   with the same size as 𝑓𝑓2′  via two convolutional layers and two non-linear layers. Then we 
fuse 𝑓𝑓2′ and 𝑒𝑒2′  by element-wise addition and producing a new mask representation 𝑒𝑒3 by an 
upsampling layer. 
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Fig. 2. The figure shows the structure as an example of a refinement module. 

 
The ECA achieves a remarkable performance improvement with the addition of only a few 

parameters, as it applies a local cross-channel interaction technique without dimensionality 
reduction [51]. The ECA module structure is shown in Fig. 3. A fast 1 𝐷𝐷 convolution is 
available for achieving ECA efficiently. It is worth noting that the size of the convolution 
kernel determines the extent of cross-channel interaction, which refers to neighboring channels 
that contribute to predicting the attention of a particular channel. The resulting channel-wise 
attention map is then obtained by applying a sigmoid activation function to the output of the 
convolutional operation. 

There exists a mapping relationship between channel dimension 𝐶𝐶 and kernel size 𝑘𝑘 . Then, 
given 𝐶𝐶 , 𝑘𝑘 can be defined adaptively by 

𝑘𝑘 =  𝛹𝛹(𝐶𝐶) = �log2 𝐶𝐶
𝛾𝛾

+ 𝑏𝑏
𝛾𝛾
�
𝑜𝑜𝑑𝑑𝑑𝑑

                                               (5) 

Where |𝑡𝑡|𝑜𝑜𝑑𝑑𝑑𝑑  indicates the nearest odd number of  𝑡𝑡. 𝑏𝑏 and 𝛾𝛾 are the parameters of the 
mapping function set to 1 and 2 respectively. Evidently, through the mapping 𝜓𝜓, the ECA 
module enables high-dimensional channels to interact over longer ranges and low-dimensional 
channels to interact over shorter ranges. This is achieved by applying a non-linear 
transformation to the channel-wise attention map, which enhances the discriminative power 
of the features. 
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Fig. 3. Structure diagram of ECA module. 

 

3.4 Mask Fusion Mechanism (MFM) 
We propose a mask fusion mechanism (MFM) to obtain a more accurate mask by fusing the 
two masks, called the “initial mask” and the “previous mask”, generated from the attention 
refinement pathway (ARP). It can obtain the corresponding mask quality score adaptively by 
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a neural network-based decision network [52] called Quality Evaluation Net in our paper, 
which is used as the fusion ratio for generating a reliable mask. Due to the fusion of the “initial 
mask” with the reliable information of the first frame and the “previous mask” of the previous 
frame with the motion state of the target, the final mask enjoys higher accuracy and stability. 

Using neural networks to judge the quality of a binary mask allows us to utilize the 
capability of deep learning models to learn complex connections between inputs and outputs. 
The quality of binary masks is not always straightforward and depends on factors such as the 
accuracy of the mask boundary, the degree of overlap with the object of interest, the 
smoothness of the edges, and the consistency of the semantics captured by the mask. Classical 
techniques are unable to capture all of these characteristics. Neural networks, on the other hand, 
can learn complex patterns in data and can leverage large amounts of data to improve their 
accuracy, we therefore adopt a learning-based approach to achieve a more nuanced and reliable 
evaluation of binary masks. 

The structure of the Quality Evaluation Net is illustrated in Fig. 4. It includes a feature 
extractor network ResNet-18 [53] and two fully connected (FC) layers. The function of the 
feature extractor is to encode the binary masks to feature space that gets the relative factors 
for determining the qualities of the masks. The first FC layer has 512 output units combined 
with a dropout layer and the next FC layer is a binary classification layer with 𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑎𝑎𝑥𝑥 cross-
entropy loss. 
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Fig. 4. Framework of the Quality Evaluation Net. 

 
The network takes two inputs: the RGB image and the binary masks, both concatenated 

into a 4-channel input. The outputs of the feature extraction are flattened and combined to 
produce a 1024-dimensional vector. This vector is fed into two FC layers, with a dropout layer 
in between, to produce two final scores for the two masks using a 𝑠𝑠𝑠𝑠𝑓𝑓𝑡𝑡𝑠𝑠𝑎𝑎𝑥𝑥 output layer, 
where a higher score indicates better mask quality. Then we use these two scores as scale 
factors and fuse the corresponding two masks into one mask.  

The network is trained using mean squared error loss, as shown in (6). Refer to [52] for 
details as we use the same formulation and parameters. 

𝐿𝐿 = 1
𝑁𝑁
Σ[(𝑦𝑦1 − 𝑦𝑦�1)2  + (𝑦𝑦2 − 𝑦𝑦�2)2 ]                                      (6) 

Where 𝑦𝑦1, 𝑦𝑦2 represent the ground truth of input and  𝑦𝑦�1,  𝑦𝑦�2  indicate the predicted values. 
After getting two masks from the mask propagation-based attention module and attention 

refinement pathway, it is necessary to merge two masks into one with a certain proportion so 
that the final mask contains historical information of different levels of importance. To achieve 
this, the Quality Evaluation Net is needed that produces two scores called 𝑠𝑠1 and 𝑠𝑠2 , which 
are used as proportions. The coefficients represent the proportions of each mask that will be 
included in the final merged mask. The formula can be expressed as: 

𝑠𝑠𝑎𝑎𝑠𝑠𝑘𝑘t  = 𝑠𝑠1  ∗  𝑠𝑠𝑎𝑎𝑠𝑠𝑘𝑘1 +  𝑠𝑠2 ∗  𝑠𝑠𝑎𝑎𝑠𝑠𝑘𝑘2                                   (7) 
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Where 𝑠𝑠1 and 𝑠𝑠2 are the two coefficients that determine the proportion of each mask in the 
final merged mask. The 𝑠𝑠𝑎𝑎𝑠𝑠𝑘𝑘1 and 𝑠𝑠𝑎𝑎𝑠𝑠𝑘𝑘2  are getting from the mask propagation-based 
attention module and attention refinement pathway that need to be merged. By utilizing the 
values of the coefficients generated automatically in the decision network rather than an 
artificial setting, the final mask can control the degree to which each mask contributes to the 
final merged mask. 

4. Experiments 
In this section, the proposed tracker is summarized and experimentally evaluated. Firstly, the 
settings and datasets of this work are introduced in Sect.4.1. Then, Sect.4.2 presents the 
ablation analysis of the proposed tracker to prove the effectiveness of our algorithm. Finally, 
the tracker is assessed with state-of-the-art algorithms on multiple publicly available datasets. 

4.1 Settings and Datasets 
Our tracker is implemented in Python3.7 with PyTorch framework on a PC equipped with an 
Intel i7-10700CPU (2.90 GHz), 16 GB RAM, and an NVIDIA GeForce GTX 1650 GPU. The 
target search region is cropped to 255 × 255 . A binary mask output is obtained by 
thresholding the predicted segmentation at 0.15, the size of which is changed to 15 × 15  and 
then stored as the value in the Memory Bank. We evaluate our approach on benchmarks: 
VOT2016 [54], OTB-100 [55], TC128 [56], and UAV123 [57]. 

4.2 Ablation Analysis 
The ablation experiment is analyzed to demonstrate the validity of the mask propagation-based 
attention module (MPAM) in joint with the mask fusion mechanism (MFM) and the attention 
refinement pathway (ARP) on tracker performance in the VOT2016 dataset. To evaluate the 
overall performance, we adopt the evaluation metrics of accuracy (Acc.), robustness (Rob.), 
and expected average overlap (EAO). The arrows next to the evaluation indicator indicate that 
the larger (↑) or the smaller (↑) represents better performance. 

Table 1 indicates the ablation experiment results at baseline, the tracker with ARP, and 
Our tracker. The baseline method means the SiamMask [5]. ‘Baseline+ ARP’ means that the 
ARP is used to refine the segmentation profile and further improve the accuracy of the tracking 
bounding box. ‘Baseline +ARP+(MPAM+MFM)’ represents our algorithm including all the 
components proposed in this article. ‘MPAM+MFM’ is jointly utilized to retrieve mask 
information from historical frames and fuse two masks to generate the final mask. 

 
Table 1. The results of ablation experiments. 

Tracker Acc. ↑ Rob. ↓ EAO ↑ 
Baseline 0.622 0.214 0.436 

Baseline+ ARP 0.631 0.214 0.443 
Baseline +ARP+(MPAM+MFM) 0.635 0.200 0.445 

 
Compared with the Baseline method, ‘Baseline + ARP’ improves accuracy rates and EAO 

performance due to mining the low-level features that are sensitive to edge detail while 
enhancing target characterization. It achieves high Accuracy and EAO scores of 63.1% and 
44.3% on the VOT2016 dataset. The performance of the tracker is further boosted after adding 
the MPAM and MFM in accuracy, robustness, and EAO, in particular, the robustness is 
significantly enhanced. The results demonstrate that the application of historical mask 



 2616     Huanlong Zhang et al.: Memory Propagation-based Target-aware Segmentation Tracker with Adaptive Mask-attention 
Decision Network  

information and background constraints has a positive effect on tracker performance. 

4.3 Quantitative Evaluation 
We employ widely recognized standards to evaluate our results and enable comparison with 
other methods. The one-pass evaluation (OPE) is applied to the following datasets: OTB100, 
VOT2016, TC128, and UAV123. 

4.3.1 Evaluation of the OTB Dataset 
OTB100 dataset, a widely applied benchmark for evaluating the performance of trackers, 
contains 100 short-term video sequences with a total of 11,000 frames. It covers a diverse 
range of challenges such as background clutter, scale variation, and fast motion. We report the 
results on OTB100. Here we first compare our tracker with 11 recent state-of-the-art methods: 
DaSiamRPN [27], TADT [58], SESiamFCTracker [59], SiamMask [5], GradNet [13], 
DeepSRDCF [60], SiamRPN [17], SiamDWfc [61], SRDCF [62], SiamFC [26] and Staple 
[63]. Fig. 5 shows the results of success plots and precision plots for OPE for the 11 trackers 
on OTB100. DaSiamRPN outperforms our tracking algorithm in terms of precision rate by the 
treatment of the influence of distractors and the strategy of a local-to-global strategy to redetect 
the target for long-term tracking. Our method ranks second in terms of precision rate and 
achieves optimal performance for the success rate. 

In the OTB100 dataset, there are different challenges, such as out-of-view, background 
clutters, in-plane rotation, fast motion, illumination variation, and scale variation. Fig. 6 
displays the performance of success rates and precision rates for our method and other 
advanced methods on six different challenges. In general, our tracker outperforms the majority 
of those in comparison. It should be noted that our method performs best when facing 
background clutter, fast motion, and scale variation. The results show that DaSiamRPN 
achieves a higher precision rate when dealing with background clutters through employing a 
distractor-aware module and data augmentation, yet we also achieved an excellent 
performance through our approach. In our algorithm, we propose a mask propagation-based 
target attention module to constrain the background clutter in the features extracted from the 
backbone network. Furthermore, our method outperforms other approaches in the case of fast 
motion and scale variations. The reason for this is that we combine historical mask information 
with the current frame features. 

 
Fig. 5. Success and precision plots of OPE on the OTB100 dataset 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 9, September 2024                       2617 

To further demonstrate the effectiveness of our method, we select five typical sequences 
from the OTB dataset, which contain most of the challenges. Fig. 7 shows a qualitative 
comparison of our algorithm and baseline on the challenging videos. As can be seen from the 
figure, our algorithm works well in the face of background clutter, deformation, fast motion, 
and occlusion. For example, in the DragonBaby and Ironman sequence, the targets are 
deformed due to different appearance changes, but our algorithm can adapt to this situation. 
For background clutter, our algorithm can accurately perform target segmentation and 
localization in Ironman and ClifBar. Besides, for the case of fast motion, the Matrix sequence 
shows that our algorithm achieves very effective results. When the target is occluded, as shown 
in Freeman4, our method can accurately localize the target compared to the baseline tracker. 

 
Fig. 6. The success and precision plots for six attributes on the OTB100 dataset 
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Fig. 7. The results of our method and baseline on five challenging sequences. (DragonBaby, Ironman, 
Matrix, ClifBar, Freeman4) The odd-numbered rows represent our algorithm and the even-numbered 
rows are the baseline trackers. The green bounding box is the ground truth, and the segmentation and 

tracking results are shown with the pink mask and the yellow bounding box. 
 

4.3.2 Evaluation of the VOT2016 Dataset 
Compared with OTB100, the VOT2016 dataset comprises 60 sequences, which provide higher 
resolution and have no grayscale data. Its evaluation metrics include three aspects, which are 
accuracy (Acc.: the higher the better.), robustness (Rob.: the lower is better.), and expected 
average overlap (EAO: the higher is better.). Table 2 shows the performance of our tracker 
compared with 8 competitive trackers, including ADMT [64], RMIT [65], MemTrack [12], 
SiamMask [5], SiamRPN [17], SCSAtt [66], SCS-Siam [67], SiamLM [68]. It can be seen that 
our tracker ranks first in accuracy and EAO scores. Our tracker reaches 0.2, the same as the 
advanced tracker ADMT, and ranks third under the robustness criterion. RMIT and SCSAtt 
have better robustness, but their accuracy and EAO scores are much lower than ours. Overall, 
the results show that our algorithm can effectively enhance the target representation. 
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Table 2. The comparison of experimental results on the VOT2016 dataset. Red, green, and blue 
highlights indicate the best, second-best, and third-best values. 

Tracker Acc. ↑ Rob. ↓ EAO ↑ 
Ours 0.635 0.200 0.445 

ADMT 0.560 0.200 0.368 
RMIT 0.535 0.166 0.289 

MemTrack 0.531 0.373 0.272 
SiamMask 0.622 0.214 0.436 
SiamRPN 0.560 0.302 0.334 
SCSAtt 0.550 0.193 0.302 

SCS-Siam 0.550 0.210 0.280 
SiamLM 0.450 0.327 0.280 

4.3.3 Evaluation of the TC128 Dataset 
Unlike OTB, 128 color video sequences in the TC-128 dataset present more complex and 
challenging tracking tasks. To prove the universality of our algorithm, we further conducted 
tests on the TC-128 dataset. In Table 3, we perform quantitative comparisons between our 
trackers and multiple state-of-the-art trackers, including SiamMask [5], RMIT [65], HCFT 
[69], HCFTstar [70], CREST [71], and ECO [72]. As seen from the Table, our approach ranks 
first in success rate and second in precision, with a precision score of 74.3% and a success rate 
AUC score of 55.7%, respectively. In comparison with the baseline method SiamMask, we 
have a success rate of 17% and a precision rate of 18% higher, respectively. 

Our tracker is better in success rate but slightly less accurate compared to the memory 
tracker RMIT. RMIT also mines target appearance information, using the memory residual 
branch to provide memory content about the target. Our approach differs from it in that the 
content of the memory is different. We memorize the mask information related to the history 
frames and use the method of mask propagation as well as the attention mechanism to tap the 
robust target expression. Thus our algorithm and RMIT both have better performance than 
other trackers. 
 

Table 3. The comparison of experimental results on the TC-128 dataset. Red, green, and blue 
highlights indicate the best, second-best, and third-best values. 

Tracker Success rate Precision 
Ours 0.557 0.743 

SiamMask 0.540 0.725 
RMIT 0.551 0.761 
HCFT 0.495 0.692 

HCFTstar 0.488 0.695 
CREST 0.533 0.708 

ECO 0.555 0.740 

4.3.4 Evaluation of the UAV123 Dataset 
The UAV123 dataset, which consists of 123 challenging video sequences captured by UAVs 
from low altitudes, has an average length of 915 frames per video. It presents significant 
challenges for trackers due to the instability of the UAV view and frequent changes in distance 
to the target, resulting in low resolutions for many objects. Fig. 8 shows the tracking results 
compared to other 7 Siamese trackers including SiamMask [5], SiamBAN [6], SiamRPN++ 
[7], SiamCAR [9], SiamRPN [17], SiamDW [61], ADMT [64]. Our tracker achieves a success 
score of 0.616 and a precision score of 0.811, which still outperforms recent competitive 
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Siamese trackers. It is worth noting that our algorithm can memorize variations in target 
appearance to improve the robustness of the tracker to challenges such as aspect ratio change, 
scale variation, and partial occlusion. 

 
Fig. 8. Success plots and precision plots of OPE on the UAV123 dataset 

5. Conclusion 
In this work, we propose a mask propagation-based attention module that leverages rich 
historical mask information about the object and prevents the background noise of the 
backbone features. By learning mask information of the historical frame based on feature 
similarity calculation, target attention maps are produced to highlight the target region on 
backbone features, thus suppressing the adverse effects of background interference. To further 
refine the segmentation result, we introduce a lightweight attention module to the upsampling 
pathway, which focuses on low-level features that are sensitive to edge details, resulting in 
segmentation with clear edges and improved tracking performance. Additionally, we utilize a 
neural network-based method for mask quality assessment to obtain quality scores, which are 
used to assign weights and fuse masks to obtain a more robust mask. Extensive experiments 
on multiple benchmark datasets demonstrate the effectiveness of our proposed tracker when 
compared to advanced algorithms.  
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