• Title/Summary/Keyword: nutrient release rate

Search Result 67, Processing Time 0.027 seconds

A Study on the Filtration of BNR Process Effluent (BNR공정 처리수의 여과에 관한 연구)

  • Kim, Seong-Young;Bum, Bong-Su;Cho, Kwang-Myeung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.5
    • /
    • pp.895-905
    • /
    • 2000
  • This study was performed to investigate the removal efficiencies of pollutants at various filtration rates and the quality of the filtered water along the depth of filter media during treatment of a BNR process effluent by a dual-media gravitational rapid filtration. The results of the experiments at filtration rates of 200, 300 and 400 m/day using the effluent of a pilot scale 4-stage BNR plant showed that turbidity of the filtered water was below 2.6 NTU, satisfying the Korean standard for water for reuse. Even though the SS removal efficiency deteriorated as the filtration rate increased, the average SS concentration of the filtered water was 1.3 mg/L at all filtration rates. Simultaneous biological nitrification and denitrification was observed with nitrification efficiencies of 17.4, 18.8 and 14.3%, and denitrification efficiencies of 32.3, 27.7 and 21.4% respectively at filtration rates of 200, 300 and 400 m/day. At the latter period of each filtration cycle, the effluent T-P concentration was higher than influent T-P concentration by 6.1 to 21.4% due to phosphorous release under DO-deficient condition.

  • PDF

Nitrogen and Phosphorus Removal Characteristics of a New Biological Nutrient Removal Process with Pre-Denitrification by Pilot Scale and Computer Simulation Program (선단무산소조를 이용한 영양소제거공정(Bio-NET)의 질소·인 제거 특성)

  • Oh, Young-Khee;Oh, Sung-Min;Hwang, Yenug-Sang;Lee, Kung-Soo;Park, No-Yeon;Ko, Kwang-Baik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.1
    • /
    • pp.121-132
    • /
    • 2000
  • This study is to investigate the performance of a new BNR process using predenitrification scheme focusing on nitrogen removal and the possibility of adapting a computer simulation scheme in BNR process development. By using a pre-denitrification basin, higher $COD/NO_3-N$ ratio could be sustained in this BNR process. The results of the investigation showed a SDNR value of 9.04mg/gMv/hr. In the anoxic tank, the average value of SPRR of 6.25mgP/gMv/hr was observed to be very sensitive to SCOD load of influents. By calibrating internal parameters (stoichiometric and kinetic parameters) of the simulation model, the results of simulation for various BNR processes gave good agreement with observed data. The major adjustment was given with three parameters, maximum specific growth rate of heterotrophic biomass, short chain fatty acid (SCFA) limit, and phosphorous release rate. With the series of simulations on varying operational conditions, the simulation by computer program can be a useful tool for process selection, and design and operation of municipal wastewater treatment plant.

  • PDF

Development of High-frequency Data-based Inflow Water Temperature Prediction Model and Prediction of Changesin Stratification Strength of Daecheong Reservoir Due to Climate Change (고빈도 자료기반 유입 수온 예측모델 개발 및 기후변화에 따른 대청호 성층강도 변화 예측)

  • Han, Jongsu;Kim, Sungjin;Kim, Dongmin;Lee, Sawoo;Hwang, Sangchul;Kim, Jiwon;Chung, Sewoong
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.5
    • /
    • pp.271-296
    • /
    • 2021
  • Since the thermal stratification in a reservoir inhibits the vertical mixing of the upper and lower layers and causes the formation of a hypoxia layer and the enhancement of nutrients release from the sediment, changes in the stratification structure of the reservoir according to future climate change are very important in terms of water quality and aquatic ecology management. This study was aimed to develop a data-driven inflow water temperature prediction model for Daecheong Reservoir (DR), and to predict future inflow water temperature and the stratification structure of DR considering future climate scenarios of Representative Concentration Pathways (RCP). The random forest (RF)regression model (NSE 0.97, RMSE 1.86℃, MAPE 9.45%) developed to predict the inflow temperature of DR adequately reproduced the statistics and variability of the observed water temperature. Future meteorological data for each RCP scenario predicted by the regional climate model (HadGEM3-RA) was input into RF model to predict the inflow water temperature, and a three-dimensional hydrodynamic model (AEM3D) was used to predict the change in the future (2018~2037, 2038~2057, 2058~2077, 2078~2097) stratification structure of DR due to climate change. As a result, the rates of increase in air temperature and inflow water temperature was 0.14~0.48℃/10year and 0.21~0.41℃/10year,respectively. As a result of seasonal analysis, in all scenarios except spring and winter in the RCP 2.6, the increase in inflow water temperature was statistically significant, and the increase rate was higher as the carbon reduction effort was weaker. The increase rate of the surface water temperature of the reservoir was in the range of 0.04~0.38℃/10year, and the stratification period was gradually increased in all scenarios. In particular, when the RCP 8.5 scenario is applied, the number of stratification days is expected to increase by about 24 days. These results were consistent with the results of previous studies that climate change strengthens the stratification intensity of lakes and reservoirs and prolonged the stratification period, and suggested that prolonged water temperature stratification could cause changes in the aquatic ecosystem, such as spatial expansion of the low-oxygen layer, an increase in sediment nutrient release, and changed in the dominant species of algae in the water body.

Water Quality Improvement of Pocheon Stream Using Freshwater Bivalves: Development and Operation of Continuous Removal of Organic Matter in Streams (S-CROM) (포천천 수질개선을 위한 패류의 이용 하천형 유기물 제어(S-CROM) 기술의 적용)

  • Kim, Baik-Ho;Lee, Ju-Hwan;Kim, Yong-Jae;Hwang, Su-Ok;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.317-330
    • /
    • 2009
  • To diminish the levels of organic matters, a novel S-CROM (continuous removal of organic matters in the stream system using freshwater bivalve), was developed and applied to the polluted stream discharging from the wastewater treatment plant, Pocheon stream, Pocheon city (Korea). Major pollutants of the stream were human population and industrial wastewaters. The study was conducted at a small dam constructed within the stream, often called 'bo', and designed with four tanks; no mussels and no sediment (negative control), no mussels and sediment (positive control), 30 mussels and sediment (D1), and 60 mussels and sediment (D2). Physicochemical and biological parameters were measured at 12 hours interval (day and night) after mussel stocking. Results indicated that Anodonta woodiana Lea (D2) clearly removed approximately 72% of chl-$\alpha$ and 57% of suspended solids on second day, however, there were no differences in removal activities between animal densities (P>0.5). Dislike a laboratory CROM system, which previously developed, there were no huge release of nutrient ($NH_3$-N and SRP), due perhaps to the higher flow rate and the lower animal density. Therefore, we may suggest that if we can determine the relevant current and the animal density considering the stream state, an S-CROM system has a strong potential to water quality improvement of eutrophic streams. Some characteristics on both CROM and S-CROM were compared.

Effects of Sediment and Cyanobacterium Microcystis aeruginosa on the Feeding Behavior of Omnivores Gold Fish Carassius auratus (잡식어 붕어의 섭식활동에 퇴적물 및 독성 남조 Microcystis aeruginosa의 영향)

  • Kim, Baik-Ho;Kim, Keun-Hee;Kim, Yong-Jae;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.212-220
    • /
    • 2010
  • Effects of sediment and toxic cyanobacterium Microcystis aeruginosa on feeding behaviors of an omnivorous fish, gold fish (Carassius auratus) were examined in laboratory and in situ mesocosm. Laboratory feeding experiments were performed in small aquaria (7 L) with cyanobacterial blooms (mainly M. aeruginosa) under the condition of sediments and no-sediments, and toxic (NIES-298) and non-toxic M. aeruginosa (NIES-101). In situ feeding experiments were conducted at the shore of eutrophic lake (Lake Ilgam, Seoul) in the mid-July, 2005. Results showed that fish introduction decreased the concentration of Chlorophyll-a (Chl-a) at higher rate in no sediment-containing aquaria. In contrast, there was a drastic increase of Chl-a in the sedimentcontaining aquaria. Fish effectively removed the M. aeruginosa cells without algal toxin (microcystin). Fish also selectively removed the large size Chl-a (>$50{\mu}m$), although all kinds of nutrients were increased after fish introduction, especially ammonia. Our results indicate that the strategic introduction of domestic omnivores Carassius auratus, to control cyanobacterial bloom in eutrophic lake will negatively play in the water quality improvement via a sediment disturbance and a density-dependent digestion.

Assessment of Pollution Characteristics of Surface Sediments from Lake Andong(II): Studies on the Nutrient and Heavy Metal Release Characteristics from Sediments in Andong Dam (안동댐 퇴적물의 오염도 평가(II): 안동댐 퇴적물에 대한 영양염류 및 중금속 용출 특성 연구)

  • Kim, Young Hun;Park, Jae Chung;Shin, Tae Cheon;Kim, Jeong Jin
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.391-405
    • /
    • 2020
  • Leaching chracteristics of Andong-dam sediment was conducted for heavy metal and nutrients. Five mixed sediment samples were prepared and leaching was conducted under aerobic and anaerobic condition for 60 days. Cd, Cu, Pb, Cr, Zn, Hg, As, Fe, Mn, phosphorus, and nitrogen were analyzed at each sampling time. The leaching rate of phosphorus was higher in anaerobic condition comparing with that of under aerobic condition. Some samples showed higher than the water-quality level IV. In case of As and Cd which showed highest contamination level in the sediment, leached concentration were 0.028 mg/L and 0.003 mg/L in maximum, respectively. The leached concentration is below than the lake water quality standard of Korea. Other heavy metals including Cu, Pb, and Cr also showed similar trend. Five step sequential extraction showed that easily extractable 1-2 step portion such as ion-exchangeable and adsorbed one was less than 10% and the most of the portion was residual. For As and Cd, the residual portion were 80% and 95% respectively indicating the risk by the heavy metal leaching into the lake for a short period was not high in comparing with the contamination levels.

Comparison of Filtering Abilities of Korean Freshwater Bivalves and Their Filtering Effects on Water Quality (국내 담수산 조개의 섭식활동이 호수 수질에 미치는 영향)

  • Kim, Ho-Sub;Choi, Kwang-Hyun;Park, Jung-Hwan;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.35 no.2 s.98
    • /
    • pp.92-102
    • /
    • 2002
  • This study was conducted to compare filtering abilities of three species of freshwater mussels (Cobicula fluminea, Corbicula leana and Unio douglasiae) and to evaluate their filter feeding effects on water quality change in experimental enclosure systems. Mussel feeding in both laboratory and enclosure resulted in decrease of particulate material, such as chlorophyll, total P, SS. In the treatment with 600 individuals of mussels, chllorophyll concentration and net primary productivity decreased from $87.3{\pm}4.5\;{\mu}g/L$ and $106.3{\pm}8.8\;{\mu}gC\;L^{-1}\;hr^{-1}$ to nearly the same level as the mussel-free enclosure ($25.0{\pm}0.5\;{\mu}g/L$ and $15.6{\pm}13.3\;{\mu}gC\;L^{-1}\;hr^{-1}$, respectively)(P< 0.05, n = 6, ANOVA). In concert with the decrease of chlorophyll concentration, not only was the transparency enhanced from 0.48 m to 1.2m but also the suspended solids and total phosphorus decreased from $22.0{\pm}1.0\;mg/L$ to $7.5{\pm}0.5\;mg/L$ and $133{\pm}0.8\;{\mu}g/L$ to $70{\pm}0.0\;{\mu}g/L$, respectively (P<0.001, $r^2$>0.71, n = 11). Although slight decrease of SRP concentration and the increase of inorganic nitrogen ($NH_3-N$ and $NO_2-N$) were observed in the mussel addition enclosure, there was no statistical difference between two enclosures. Based on the filtering rate on phytoplankton and nutrient release rate in forms of feces and pseudofeces, Corbicula leana appeared to be the most efficient filter-feeder among three mussel species. These results inidicate that Cobicula play an important role in controlling particulate sestons and thus it could be applied as a biocontroler for the water quality management in lakes and reservoirs with algal blooms.