• Title/Summary/Keyword: nutrient release

Search Result 182, Processing Time 0.031 seconds

Characteristics of Release Rate of Nutrients from Sediment in Lake Paldang and Lake Cheongpyeong (팔당호와 청평호 퇴적물에서 영양염류 용출 특성)

  • Lee, Kyoo;Choi, Myung-Jae;Park, Hae-Kyung;Lee, Jang-ho
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.742-749
    • /
    • 2009
  • To examine the characteristics of the nutrient release from the sediments in two reservoirs, Lake Paldang and Lake Cheungpyeung, we analyzed physical and chemical properties of the sediments and calculated the nutrient release rates from the sediments. The particle properties of sediments in Lake Paldang changed from silt to sand after summer rainy season, especially in the water area of the Kyeungan River where the water depth was shallow and the width of river was narrow. The sediments in Lake Cheungpyeung had higher contents of silt and clay than in Lake Paldang, and the particle size was not much different before and after rainfall. The release rates of nutrients in two lakes varied with the kind of nutrients and the season. The release rates of DTN and ${NH_4}^+-N$ in Lake Paldang were faster in spring than autumn. But the Lake Cheungpyeung showed similar values of release rates before and after summer rainy season. ${NO_3}^--N$ and phosphorous were not released from sediments or were absorbed into sediments all the time in two lakes. Compared with other lakes, the sediments of two lakes consisted of bigger particles and had a lower organic matters content than other lake-type reservoirs. Due to the short hydraulic retention time and no stratification throughout the year in Lake Paldang and Lake Cheungpyeung, the release rates of nutrients from sediment in these reservoirs were lower than other lakes and this seems to be a typical characteristic of river-type reservoirs.

Autophagy down-regulates NLRP3-dependent inflammatory response of intestinal epithelial cells under nutrient deprivation

  • Yun, Yewon;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.260-265
    • /
    • 2021
  • Dysregulation of inflammation induced by noninfectious stress conditions, such as nutrient deprivation, causes tissue damage and intestinal permeability, resulting in the development of inflammatory bowel diseases. We studied the effect of autophagy on cytokine secretion related to intestinal permeability under nutrient deprivation. Autophagy removes NLRP3 inflammasomes via ubiquitin-mediated degradation under starvation. When autophagy was inhibited, starvation-induced NLRP3 inflammasomes and their product, IL-1β, were significantly enhanced. A prolonged nutrient deprivation resulted in an increased epithelial mesenchymal transition (EMT), leading to intestinal permeability. Under nutrient deprivation, IL-17E/25, which is secreted by IL-1β, demolished the intestinal epithelial barrier. Our results suggest that an upregulation of autophagy maintains the intestinal barrier by suppressing the activation of NLRP3 inflammasomes and the release of their products, including pro-inflammatory cytokines IL-1β and IL-17E/25, under nutrient deprivation.

Effects of Environmental Factors on Zoospore Release and Early Growth of the Green Tide Alga Cladophora albida (녹조대발생종 솜대마디말(Cladophora albida)의 유주자 방출과 초기생장에 환경요인이 미치는 영향)

  • Na, Yeon Ju;Jeon, Da Vine;Lee, Jung Rok;Park, Seo Kyoung;Kim, Young Sik;Choi, Han Gil;Nam, Ki Wan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.50 no.2
    • /
    • pp.175-182
    • /
    • 2017
  • We examined the effects of environmental factors on zoospore release and germling growth of the green tide alga Cladophora albida under various conditions of temperature${\times}$irradiance (zoospore release), temperature${\times}$irradiance${\times}$ nutrient (germling growth), and a single factor test of salinity. Zoospore release was maximized at $30^{\circ}C$ and $100{\mu}mol\;photons\;m^{-2}s^{-1}$ in the temperature irradiance experiment and at 34 psu in the salinity experiment. Maximum germling growth was observed at $25^{\circ}C$ with $100{\mu}mol\;photons\;m^{-2}s^{-1}$ and PES (Provasoli's Enriched Seawater) in the temperature irradiance nutrient experiment, and at 34 psu in the salinity experiment. Germlings grew faster at higher irradiances for a given temperature level, and also grew faster as salinity increased over the range of 5-34 psu. Overall, optimal environmental conditions for zoospore release were $30^{\circ}C$, $100{\mu}mol\;photons\;m^{-2}s^{-1}$ and 34 psu. Maximal germling growth occurred at $25^{\circ}C$, $100{\mu}mol\;photons\;m^{-2}s^{-1}$, PES, and 34 psu. C. albida blooms are most likely to occur under these optimal environmental conditions, as plentiful zoospore release and rapid germling growth lead to population growth.

Slow Release Fertilizer Decreases Leaching Loss of Nitrogen in Sand-based Root Zone (완효성비료의 모래식재지반에 있어서 질소용탈의 감소)

  • Chen, Wei-Feng;Wei, Wang;Ying-Jie, Qi
    • Asian Journal of Turfgrass Science
    • /
    • v.21 no.2
    • /
    • pp.177-182
    • /
    • 2007
  • When a football field is constructed using sand medium, the fertilizer management has to be adjusted because of the low nutrient holding capacity and higher leaching rate. The objective of this study was to test the effects of slow release fertilizers on Kentucky bluegrass (Poa pratensis L.) growth in simulated sport field rootzones with PVC pipe pots. Data of turfgrass color, uniformity, growth rate, biomass above ground, and the nitrate content in the leaching solution was collected at different growing stages and during four simulated rain fall periods. The result showed that the nutrient release rate of urea was the highest and that of controlled release nitrogen fertilizer was the lowest. Effects of the controlled release nitrogen fertilizer lasted 14 days more than other lawn fertilizers and 28 days longer than regular urea with acceptable quality levels of turf. The slow release fertilizer also restrained excessive growth of the grass, reduced the times of mowing. Slow release fertilizer used in this study reduced $NO_3$-N leaching by almost 50% at the beginning of turf establishment.

Nutrient dynamics in decomposing litter from four selected tree species in Makurdi, Benue State, Nigeria

  • Okoh, Thomas;Edu, Esther
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.376-384
    • /
    • 2019
  • Background: Nutrient release during litter decomposition was investigated in Vitex doniana, Terminalia avecinioides, Sarcocephallus latifolius, and Parinari curatellifolius in Makurdi, Benue State Nigeria (January 10 to March 10 and from June 10 to August 10, 2016). Leaf decomposition was measured as loss in mass of litter over time using the decay model Wt/W0 = e-kd t, while $Kd=-{\frac{1}{t}}In({\frac{Wt}{W0}})$ was used to evaluate decomposition rate. Time taken for half of litter to decompose was measured using T50 = ln 2/k; while nutrient accumulation index was evaluated as $NAI=(\frac{{\omega}t\;Xt}{{\omega}oXo})$. Results: Average mass of litter remaining after exposure ranged from 96.15 g, (V. doniana) to 78.11 g, (S. lafolius) in dry (November to March) and wet (April to October) seasons. Decomposition rate was averagely faster in the wet season (0.0030) than in the dry season (0.0022) with P. curatellifolius (0.0028) and T. avecinioides (0.0039) having the fastest decomposition rates in dry and wet seasons. Mean residence time (days) ranged from 929 to 356, while the time (days) for half the original mass to decompose ranged from 622 to 201 (dry and wet seasons). ANOVA revealed highly significant differences (p < 0.01) in decomposition rates and exposure time (days) and a significant interaction (p < 0.05) between species and exposure time in both seasons. Conclusion: Slow decomposition in the plant leaves implied carbon retention in the ecosystem and slow release of CO2 back to the atmosphere, while nitrogen was mineralized in both seasons. The plants therefore showed effectiveness in nutrient cycling and support productivity in the ecosystem.

The Role of Quantitative Traits of Leaf Litter on Decomposition and Nutrient Cycling of the Forest Ecosystems

  • Rahman, Mohammed Mahabubur;Tsukamoto, Jiro;Tokumoto, Yuji;Shuvo, Md. Ashikur Rahman
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.1
    • /
    • pp.38-48
    • /
    • 2013
  • Decomposition of plant material is an important component in the study of forest ecosystem because of its critical role in nutrient cycling. Different tree species has different nutrient release patterns, which are related to leaf litter quantitative traits and seasonal environmental factors. The quantitative traits of leaf litter are important predictors of decomposition and decomposition rates increase with greater nutrient availability in the forest ecosystems. At the ecosystem level, litter quantitative traits are most often related to the physical and chemical characteristics of the litter, for example, leaf toughness and leaf mass per unit area, and lignin content tannin and total phenolics. Thus, the analysis of litter quantitative traits and decomposition are highly important for the understanding of nutrient cycling in forest ecosystems. By studying the role of litter quantitative traits on decomposition and nutrient cycling in forest ecosystems will provide a valuable insight to how quantitative traits influence ecosystem nutrient dynamics. Such knowledge will contribute to future forest management and conservation practices.

Nutrient Release during the Aerobic and Alternant Aerobic Sludge Digestion (도시하수슬러지의 호기성 소화시 영양염류 용출에 관한 연구)

  • 박종안;김성홍;허준무
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.82-87
    • /
    • 2000
  • 생물학적 슬러지를 대상으로 간헐포기 소화와 호기성 소화의 회분실험을 실시하였다. 생물학적 슬러지의 간헐포기 및 호기성 소화 초기단계에서 미생물의 감량은 주로 내생 호흡에 의해 이루어졌다. 이 단계에서 질소는 곧바로 용출되지 않고 슬러지내에 잔존함으로서 슬러지의 질소함량은 일시적으로 증가한다. 그러나 소화후반에서는 최초의 질소함량수준으로 다시 감소하였다. 34일간의 회분식 소화에서 호기성 소화의 총질소 제거효율은 0.1%로서 거의 제거가 안된 반면, 포기 비율 0.25, 05 및 0.75인 간헐포기 소화에서는 각각 42.7%, 42.5% 및 17.6%로 나타나 간헐포기 소화가 호기성 소화보다 질소 제거측면에서 우수하였다. VSS의 감소에 따라 슬러지내의 인도 수중으로 용출하였으나, 인 용출율은 VSS 감소율 보다 훨씬 낮았고 그 결과 소화슬러지의 인 함량은 지속적으로 증가하였다. 호기성 소화와 간헐포기 소화는 소화슬러지의 인 함량이 증가하는 공정이므로 반송수의 인 부하는 상대적으로 낮아지게 되고 이는 하수의 영양염류 제거측면에서 긍정적인 효과를 미칠 것으로 기대된다.

  • PDF

Prediction of Nitrogen Loading from Forest Stands in Eutrophication of Lake (호소 부영양화에 있어서 산림임반으로부터 질소부하 평가를 위한 조사)

  • Chung, Doug-Young;Lee, Young-Han;Lee, Jin-Ho;Park, Mi-Suk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.4
    • /
    • pp.430-437
    • /
    • 2010
  • The continuous release of nutrient sources into natural water resource can be a continuing problem in eutrophication, as well as severe reductions in water quality. However, any desirable measure is not developed yet even though so many researches and efforts have been done to solve this problem. Forest as one of troublesome nonpoint sources may contributes most to nutrient loading, but the loading of N and P from forest in order to grasp the eutrophication potential of nonpoint sources has not been evaluated. The nutrient sources from the organic litter accumulated on the surface of forest soils can be a critical factor in continuity of eutrophication of a lake. The decomposition rate of litter can be estimated to predict release of N and P from the forest stand. The loss rate of nitrogen is complicated but depends in part upon the physical matrix of the element. Therefore, long-term nutrient budget and flux estimates at stand would be useful tools in calculating potential nutrient fluxes into the watercourses in a sustainable way. The present investigation can give insight to the actual situation of the eutrophication potentials of forest as the practical nonpoint sources.

Estimation of N Mineralization Potential and N Mineralization Rate of Organic Amendments in Upland Soil

  • Shin, Jae-Hoon;Lee, Sang-Min;Lee, Byun-Woo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.6
    • /
    • pp.751-760
    • /
    • 2015
  • Management of renewable organic resources is important in attaining the sustainability of agricultural production. However, nutrient management with organic resources is more complex than fertilization with chemical fertilizer because the composition of the organic input or the environmental condition will influence organic matter decomposition and nutrient release. One of the most effective methods for estimating nutrient release from organic amendment is the use of N mineralization models. The present study aimed at parameterizing N mineralization models for a number of organic amendments being used as a nutrient source for crop production. Laboratory incubation experiment was conducted in aerobic condition. N mineralization was investigated for nineteen organic amendments in sandy soil and clay soil at $20^{\circ}C$, $25^{\circ}C$, and $30^{\circ}C$. N mineralization was facilitated at higher temperature condition. Negative correlation was observed between mineralized N and C:N ratio of organic amendments. N mineralization process was slower in clay soil than in sandy soil and this was mainly due to the delayed nitrification. The single and the double exponential models were used to estimate N mineralization of the organic amendments. N mineralization potential $N_p$ and mineralization rate k were estimated in different temperature and soil conditions. Estimated $N_p$ ranged from 28.8 to 228.1 and k from 0.0066 to 0.6932. The double exponential model showed better prediction of N mineralization compared with the single exponential model, particularly for organic amendments with high C:N ratio. It is expected that the model parameters estimated based on the incubation experiment could be used to design nutrient management planning in environment-friendly agriculture.

PHOSPHORUS RELEASE AND UPTAKE ACCORDING TO NITRATE LOADING IN ANOXIC REACTOR OF BNR PROCESS

  • Kim, Kwang-Soo
    • Environmental Engineering Research
    • /
    • v.10 no.5
    • /
    • pp.257-263
    • /
    • 2005
  • A batch and a continuous type experiments were conducted to test the conditions for simultaneous phosphorus release and uptake, and denitrification, taking place in one process. The bacteria able to denitrify as well as to remove phosphorus were evaluated for the application to biological nutrient removal(BNR) process. In the batch-type experiment, simultaneous reactions of phosphorus release and uptake, and also denitrification were observed under anoxic condition with high organic and nitrate loading. However the rate and the degree of P release were lower than that occurred under anaerobic condition. BNR processes composed of anaerobic-anoxic-oxic(AXO), anoxic-anaerobic-oxic(XAO) and anoxic-oxic(XO) were operated in continuous condition. The anoxic reactors in each process received nitrate loading. In the AXO process, P release in anaerobic reactor and the luxury uptake in oxic reactor proceeded actively regardless to nitrate loading. However in XAO and XO processes, P release and luxury uptake occurred only with the nitrate loading less than $0.07\;kg{NO_3}^--N$/kgMLSS-d. With higher nitrate load, P release increased and the luxury uptake decreased. Therefore, it appeared that the application of denitrifying phosphorus-removing bacteria (DPB) to BNR process must first resolve the problem with decrease of luxury uptake of phosphorus in oxic reactor.