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Abstract
Decomposition of plant material is an important component in the study of forest ecosystem because of its critical 
role in nutrient cycling. Different tree species has different nutrient release patterns, which are related to leaf litter 
quantitative traits and seasonal environmental factors. The quantitative traits of leaf litter are important predictors of 
decomposition and decomposition rates increase with greater nutrient availability in the forest ecosystems. At the ecosystem 
level, litter quantitative traits are most often related to the physical and chemical characteristics of the litter, for example, 
leaf toughness and leaf mass per unit area, and lignin content tannin and total phenolics. Thus, the analysis of litter 
quantitative traits and decomposition are highly important for the understanding of nutrient cycling in forest ecosystems. 
By studying the role of litter quantitative traits on decomposition and nutrient cycling in forest ecosystems will provide 
a valuable insight to how quantitative traits influence ecosystem nutrient dynamics. Such knowledge will contribute 
to future forest management and conservation practices.
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Introduction

Litter production and litter decomposition are key proc-
esses of nutrients cycling in forest ecosystems. Litter de-
composition is the main way of transfer of organic matter 
and mineral elements from vegetation to the soil surface 
(Vitousek and Sanford 1986; Moraes et al. 1999; Berg and 
McClaugherty 2008; Oladoye et al. 2008). Plant pro-
duction depends on the recycling of nutrients within the 
system; recycling depends on the decomposition of organic 
matter and release of the nutrients it contains (Temel 2003). 

Although ground vegetation in sparse open stands can 
make a substantial contribution to total litterfall in the 
stand, litter from the trees is generally the largest natural 
source for the inflow of organic material and nutrients to 
the forest floor (Berg et al. 1999). Different species have 
different nutrient release patterns, which are related to litter 
quantitative traits (quality) and seasonal environmental fac-
tors (Khiewtam and Ramakrishnan 1993; Wang et al. 
2008). The humus profile is usually thinner in deciduous 
and sclerophyllous forests and than in coniferous forests 
(Van Wesemael and Veer 1992) suggested that the lower 
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rate of decomposition of the leaf litter in the Japanese cedar 
(Cryptomeria japonica D. Don) plantation and red pine 
(Pinus resinosa Ait.) forest, compared to that of the oak for-
est may be due to their chemical properties (Kavvadias et al. 
2001). 

Litter decomposition rates are influenced by at least 
three general factors: the composition and activity of the de-
composer community, the quantitative traits of the litter and 
the physicochemical environment (Anderson and Swift 
1983; Heal et al. 1997; Kavvadias et al. 2001). Species’ type 
had a large influence on the decomposition rate (k), most 
probably through its influence on leaf quality and morphol-
ogy (Salinas et al. 2011). 

Litter quantitative traits (quality) become a better deter-
minant of decomposition rates than climate (Meentemeyer 
1978; Aerts 1997; Tateno et al. 2007). For instance, decom-
position rates of Scots pine needles vary across boreal for-
ests more according to substrate quality rather than to cli-
matic conditions (Berg and McClaugherty 2008). 
Similarly, a prevailing effect of litter quality over climate has 
been reported for wet tropical forests (Tanner 1981; Weider 
et al. 2009). Litter decomposability is negatively correlated 
with the level of quantitative defense of leaves (Kurokawa 
and Nakashizuka 2008). Litter turnover rate is strongly 
controlled by tree species effect, and therefore, by litter 
quality in cool temperate and boreal forests (Wardle et al. 
1997; Reich et al. 2005). Above ground and below ground 
ecosystem functioning in forests is closely linked with each 
other through litter quality or quantitative defensive traits 
of leaves (Wardle 2002). 

At the ecosystem scale, litter quantitative traits are most 
often related to the physical and chemical characteristics 
of the litter, for example leaf toughness and LMA, and 
lignin content (Aber et al. 1990; Aerts 1997; Peréz- 
Harguindeguy et al. 2000; Freschet et al. 2011), tannin 
and total phenolics (Rahman and Motiur 2012). 
Chemical composition is one of the main factors control-
ling the decomposition rate of litter. This was postulated 
already by Tenney and Waksman (1929) and several stud-
ies have later stressed the importance of inorganic and or-
ganic components in controlling turnover rate of organic 
matter and release of nutrient elements (Melillo et al. 
1982; Berg et al. 1993; Johansson 1994). Boring and 
Hendricks (1992) revealed that generally, litter with high 

lignin and low Nitrogen (N) concentration has a slower 
decomposition rate and immobilizes more N than litter 
with low lignin and high N content. Information on levels 
of inorganic and organic components in tree litter is thus 
of great importance for studying the carbon dynamics in 
forest ecosystems. Decomposition of leaf litter is also an 
integral and significant part of biochemical nutrient cy-
cling and food webs; this refers to both the physical and 
chemical breakdown of litter and the mineralization of 
nutrients (Boulton and Boon 1991; Baker et al. 2001). 
Decomposition of plant material is an important compo-
nent in the study of forest ecosystem because of its critical 
role in nutrient cycling. Thus the analysis of litter quanti-
tative traits and decomposition is highly important for the 
understanding of nutrient cycling in forest ecosystems. 
This paper will discuss the role of leaf litter quantitative 
traits on decomposition and nutrient cycling of forest 
ecosystems.

Leaf litter quantitative traits

Litter quality has been considered as an important factor 
controlling the　 decomposition rate (Singh et al. 1999; 
Sundarapandian and Swamy 1999; Ribeiro et al. 2002). 
Leaf litter quantitative traits can be described following ma-
jor groups:

Quantitative physical traits of leaf litter 
Quantitative physical traits of leaf litter may be divided 

into following categories
1. Leaf litter toughness 
2. Leaf mass per unit area (LMA) 
The toughness of plant litter, which may be related to 

anti-herbivore defense of living leaves, can also affect de-
composition and nutrient release (Gallardo and Merino 
1993; Cornelissen and Thompson 1997; Peréz-Harguin-
deguy et al. 2000). LMA also has the great effect on the 
decomposition rate of litter. Litter decomposition rates in 
general are negatively correlated with LMA (Lambers et 
al. 1998).

Quantitative chemical traits of leaf litter
Leaf litter quantitative chemical traits have been meas-

ured as lignin, tannins, phenols, carbohydrates (e.g. cellu-
lose and hemicellulose) (Aber et al. 1990; Aerts 1997; 
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Fig. 1. Influence of leaf toughness and nitrogen content on decomposition
(data from Gallardo and Merino 1993, adapted from Manuel and Molles 
2009).

Fig. 2. Relationship between the decomposition constant and the lignin: ni-
trogen ratio of litter (adapted from Melillo et al. 1982).

McClaugherty and Berg 2011; Rahman and Motiur 
2012).

Roles of quantitative traits on leaf litter decompo-
sition

Role of quantitative physical traits on decomposition
Leaf toughness is one of the good predictors for predict-

ing the litter decomposition rate (Quinn et. al 2000; 
Peréz-Harguindeguy et al. 2000; Anderson 2008; Freschet 
et al. 2011). Leaf toughness may slow breakdown the rate 
of litter is reported by several related studies (Goncalves et 
al. 2006; Moretti et al. 2007). The negative association 
found between leaf toughness and decomposition rate sug-
gest that the structural defenses of the living leaves, persist-
ing in litter, could have been responsible for slow decom-
position (Peréz-Harguindeguy et al. 2000). Gallardo and 
Merino (1993) found that the best predictor of mass loss is 
the ratio of leaf toughness to nitrogen content. The tougher 
leaves with lower concentrations of nitrogen decomposed at 
a lower rate (Fig. 1).

LMA also can influence the decomposition rate of litter. 
Low-LMA leaves with high nutrient contents decompose 
much faster, leading to increased carbon and nutrient cy-
cling (Cornelissen et al. 1999; Poorter et al. 2009). 
Community-level LMA had a strong negative impact on 
the primary productivity and decomposition rate of the suc-
cessional communities (Poorter et al. 2009). A study from 
China demonstrated that leaf area had little effect on de-
composition (Huang et al. 2004).

Roles of quantitative chemical traits on leaf litter de-
composition

Role of lignin on leaf litter decomposition
Lignin concentration in leaves (or lignin to mineral ra-

tios) has been widely used as an index of organic-matter 
quality. For instance, lignin concentrations alone, or lignin 
to N ratios in leaves could explain the rate of decom-
position; negative correlations have been reported between 
lignin concentrations (or lignin to mineral ratios) and de-
composition rates (Fig. 2) (Meentemeyer 1978; Melillo et 
al. 1982; Vitousek et al. 1994; Hobbie 1996; Kitayama et al. 
2004). Lignins strengthen leaves significantly (Coley et al. 
1985; Wright and Illius, 1995; Peréz-Harguindeguy et al. 
2000) and litter with high lignin concentration is known to 
be resistant to decomposition (Meentemeyer 1978; 
Gallardo and Merino 1993; Wardle et al. 1998). On the 
other hand, hemicellulose and lignin concentrations were 
reported to negatively correlated with decomposition 
(Vivanco and Austin 2008). The initial lignin content of leaf 
litter influenced the rate of decomposition. The species ex-
hibiting higher initial lignin contents showed lower rates of 
decomposition of leaf litter. For example, the decomposition 
of Quercus dealbata litter is slower than that of Quercus fenes-
trata (Laishram and Yadava 1988). However, the concen-
trations of the lignin fraction increased as decomposition 
proceeded, reaching relatively steady levels in the range of 
45-51% (Berg 2000; Sarjubala and Yadava 2007). These 
increases showed partially linear relationships with accumu-
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Fig. 3. Relationship between total phenolics and N contents during leaf de-
composition of Bruguiera gymnorrhiza (Bg) and Kandelia candel (Kc). 
Symbols are: black triangle for Bg leaf; white triangle for Kc leaf (Adapted 
from Lin et al. 2006).

lated mass loss (Berg et al. 1984). Raich et al. (2007) found 
a highly significant, positive correlation between lignin con-
tents and decay rates. This finding is supported by meas-
urements of soil organic matter contents in the same sites, 
which correlated negatively with foliar lignin contents. It 
would appear that the decomposer organisms in their study 
sites did not just tolerate lignin, they preferred it. Perhaps 
organisms can trump chemistry in controlling litter decom-
position in tropical rain forests (Anderson and Swift 1983; 
Lavelle et al. 1993). Regardless, this result contradicts 
models that predict that lignin depresses litter turnover 
rates (Meentemeyer 1978) and highlights the potential 
problem that exists when individual factors are presumed to 
control the rate of a process that is under multivariate con-
trol (Raich et al. 2007).

Role of total phenolics on leaf litter decomposition
Phenolics may be an important determinant of plant C 

quality　and significantly affect decomposition and soil nu-
trient　availability (Horner et al. 1988; Schimel et al. 1996; 
Kraus et al. 2003; Meier and Bowman 2008). Phenolics 
may prevent leaf damage resulting from exposure to ex-
cessive light (Gould and lee 2002). The bulk of phenolics 
remain present during leaf senescence and after death, these 
compounds may also affect microbial decomposers 
(Harrison 1971) and therefore delay microbial decom-
position of plant litter (Salusso 2000). Canhoto and Graça 
(1996) observed a strong negative correlation between the 
phenol content of different native litter types and litter de-
composition rates in a stream, whereas Canhoto and Graça 
(1999) showed that phenolics from Eucalyptus leaves de-
crease feeding by detritivores. Thus, roles of phenolics on 
detritivores may be one reason for the low decomposability 
of Eucalyptus litter. The initial concentration of total phe-
nolics in litter is positively correlated with dry organic car-
bon loss (Madritch and Hunter 2004). High amount of 
phenolics compounds in plants tissue decrease N concen-
tration, which impedes the litter decomposition (Xuefeng et 
al. 2007). Barta et al. (2010) confirmed that a low amount 
of phenolics and low phenolics/N ratio in plant litter is 
closely related to higher differences in microbial respiration 
rates and mineral N release during the four months of litter 
decomposition in spruce forest. Lin et al. (2006) observed a 
negative correlation between total phenolics and N contents 

for Kandelia candel and Bruguiera gymnorrhiza leaf litter at 
various stages of decomposition (Fig. 3). Phenols may in-
fluence rates of decomposition as they bind to N in the 
leaves forming compounds resistant to decomposition 
(Palm and Sanchez 1991). Gorbacheva and Kikuch (2006) 
found that dynamics of easily oxidized phenolics may influ-
ence the litter decomposition rate in the monitored sub-
arctic field. 

Role of tannin on leaf litter decomposition
Nitrogen and lignin concentration or C: N and lignin: N 

ratios are often used to predict rates of litter decomposition. 
However, a number of studies have shown that tannin 
and/or polyphenol content is a better predictor of decom-
position, net N mineralization and N immobilization (Palm 
and Sanchez 1991; Gallardo and Merino 1992; Driebe and 
Whitham 2000; Kraus et al. 2003). Coq et al. (2010) men-
tioned that litter decomposition in tropical rainforest corre-
lated well with condensed tannin concentration. They con-
cluded that leaf litter tannins play a key role in decom-
position and nutrient cycling in the tropical rainforest. 
Leaves with high initial contents of condensed tannins, 
seem to decompose slowly in both terrestrial (Valachovic et 
al. 2004) and aquatic ecosystems (Wantzen et al. 2002). 
Condensed tannin may play an important role in aquatic 
leaf litter decomposition, as they may deter invertebrate 
shredders (Wantzen et al. 2002). Condensed tannin deters 
herbivore feeding by acting as toxins and not as digestion 
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Fig. 4. A conceptual diagram of nutrient cycling of forest ecosystem 
(adapted from Barnes et al. 1998).  

inhibitors by protein precipitation. Other researchers have 
obtained data that suggest the toxic nature of tannins 
(Robbins et al. 1987; Clausen et al. 1990). Alongi (1987) 
noticed that if decomposers are inhibited by high contents 
of tannins in their food, strong effects on litter breakdown 
would be expected. Handayanto et al. (1997) found a 
strong negative correlation between N mineralization rates 
and the protein precipitation capacity of litter material, a 
measure of tannin reactivity. Litter material high in tannin 
content is commonly associated with reduced decom-
position rates (Gallardo and Merino 1992; Kalburtji et al. 
1999). The convergent evolution of tannin-rich plant com-
munities has occurred on nutrient-poor acidic soils 
throughout the world. Tannins were once believed to func-
tion as anti-herbivore defenses, but more and more ecolo-
gists now recognize them as important controllers of de-
composition and nitrogen cycling processes. Tannins may 
also reduce insect predation because they increase the leaf 
toughness (Haslam 1988). Kraus et al. (2003) summarized 
that tannins may limit litter decomposition in a number of 
different ways: (1) by themselves being resistant to decom-
position (2) by sequestering proteins in protein-tannin 
complexes that are resistant to decomposition (3) by coating 
other compounds, such as cellulose, and protecting them 
from microbial attack (4) by direct toxicity to microbes, and 
(5) by complexing or deactivating microbial exoenzymes.

Role of carbohydrates (cellulose and hemicelluloses) on 
leaf litter decomposition
Cellulose is a polysaccharide which is assembled from 

glucose monomer units, and, which is the main constituent 
of plant cell walls. It is a linear homopolymer composed of 
(1→4)-β-glucopyranose. Cellulose can account for be-
tween 30 and 60% of plant materials (dry wt.), and its de-
composition is of major importance to the biogeo-chemical 
cycling of carbon (C) and essential plant nutrients (Paul 
and Clark 1996; Chew et al. 2001). Bunt (1988) reported 
that cellulose plays a major role in N immobilisation since it 
breaks down very rapidly and has a high C: N ratio. Initial 
C/N and N/P ratios were demonstrated to be important 
factors of regulating litter decomposition rate (Zhou et al. 
2008). On the other hand, plant litter of a lower C: N ratio 
may be more susceptible to decomposition and mineraliza-
tion (Pal et al. 2010). 

Nutrient cycling in forest ecosystem

Ecologists refer to the use, transformation, movement, 
and reuse of nutrients in ecosystems as nutrient cycling. 
Because of the physiological importance of nutrients, their 
relative scarcity and their influence on rates of primary pro-
duction, nutrient cycling is one of the most significant eco-
system processes studied by ecologists. Three nutrient cy-
cles play especially prominent roles: the nitrogen cycle, the 
carbon cycle and the phosphorus cycle. However, elements 
such as phosphorus (P), carbon (C), nitrogen (N), potas-
sium (K), and iron (Fe) are used over and oven. Elements 
that are required for the biological processes of organisms 
are called nutrients (Barnes et al. 1998). Nutrients enter 
terrestrial ecosystems through geological, hydrological and 
biological process. Since a cycle can start anywhere; but it 
will start with the 1) uptake of nutrients by plant roots and 
their mycorrhizae. 2) allocation of nutrients to biomass con-
struction and maintenance. 3) nutrient reabsorption from 
senescing tissue, 4) return of nutrients to the soil via above- 
and below-ground litter, and 5) microbially mediated re-
lease of inorganic nutrients to the soil solution (mineraliz-
ation) during organic matter decomposition. Fig. 4 shows 
the schematic diagram of nutrient cycling of forest 
ecosystem.

Forest ecosystem’s nutrient cycling is structured by auto-
trophic plants, which incorporate minerals into organic 
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Table 1. Nutrient return (gm-1year-1) via leaf litter to forest soil in a monoculture Cunninghamia lanceolata and mixed with M. macclurei stands
(adapted from Wang et al. 2008)

C N P K Ca Mg

Monoculture
    C. lanceolata
Mixed stand
    C. lanceolata
    M. macclurei
Total

167±36a

122±31
  91±18
213±47a

4.3±1.1a

3.6±0.8
3.4±0.7
7.0±1.3b

0.10±0.04a

0.09±0.03
0.38±0.12
0.48±0.13b

0.19±0.05a

0.17±0.03
0.62±0.21
0.79±0.29b

3.32±0.86a

2.33±0.71
0.71±0.28
3.04±0.87a

0.62±0.26a

0.45±0.22
0.27±0.13
0.72±0.30a

Values followed by different litter within the same column are different significantly at 5% level according to the Tukey’s honestly significant 
difference test.

compounds. After senescence or death, litter enters the de-
composition process in which organic matter is broken 
down and nutrients are released in an inorganic form, i.e. 
mineralized. This plant-litter-soil cycle is considered the 
core of ecosystem cycling, which dominates the dynamics of 
ecosystem N cycling (Knops et al. 1996; Schlesinger 1997; 
Knops et al. 2010). In most natural terrestrial ecosystems, 
this internal ecosystem nutrient recycling exceeds the in-
puts-outputs fluxes by a large amount, especially for N and 
P (Schlesinger 1997). However, comparative study of lit-
terfall, litter decomposition and nutrient return in a mono-
culture Cunninghamia lanceolata and a mixed stand in south-
ern China by Wang et al. (2008) showed that the C return 
of leaf litter varied from 167 g m-2 year1 (in pure stand) to 
213 g m-2 year-1 (in mixed stand) (Table 1). C was generally 
returned to soil in the highest amount, followed by N with a 
range of 4.3-7.0 g m-2 year-1 and Ca with a range of 3.0-3.3 
g m-2 year-1. On the other hand, the returns of P, K and Mg 
through leaf litter were much smaller than those for C, N 
and Ca. No significant differences existed in the returns of 
C, Ca and Mg between pure and mixed stands (Wang et al. 
2008). N release during litter decomposition becomes more 
important with higher litter quality, decreasing soil C: N ra-
tios and decreased SOM stabilization.

Role of leaf litter quantitative traits on nutrient cy-
cling 

The toughness of plant litter can affect decomposition 
and nutrient release. Litter decomposition rates in general 
are positively correlated with N content and negatively so 
with LMA (Lambers et al. 1998). Low-LMA leaves with 

high nutrient contents decompose much faster, leading to 
increased carbon and nutrient cycling (Cornelissen et al. 
1999; Poorter et al. 2009). 

Lignin is one of the most slowly decomposing compo-
nents of dead vegetation, contributing a major fraction of 
the material that becomes humus as it decomposes. The re-
sulting soil humus generally increases the photosynthetic 
productivity of plant communities growing on a site as the 
site transitions from disturbed mineral soil through the 
stages of ecological succession, by providing increased cati-
on exchange capacity in the soil and expanding the capacity 
of moisture retention between flood and drought condi-
tions. Lignin and nitrogen contents control carbon dioxide 
production and nitrogen mineralization in soils. Prescott 
(2005) revealed that N deposition or fertilization of for-
ested ecosystems with high-lignin litter may lead to greater 
accumulations of humus or soil organic matter, and greater 
sequestration of C.

Phenolics can reduce soil nutrient availability, either in-
directly by stimulating microbial nitrogen (N) immobiliza-
tion or directly by enhancing physical protection within soil. 
Phenolic-rich plants may therefore negatively affect neigh-
boring plant growth by restricting the N supply (Meier and 
Bowman 2008). However, more recent studies show that 
both　phenolics and tannins are also important in shaping a　
plant’s soil nutrient environment (Hättenschwiler and 
Vitousek 2000; Kraus et al. 2004). Phenols can also interact 
with nutrient　cycling in various ways beyond a simple neg-
ative　 correlation between phenol concentration and　 de-
composition rate. These interactions can be considered　to 
fit within two groups of mechanisms - effects on the　activ-
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ity of soil organisms, and physico-chemical effects on　the 
pools and forms of nutrients (Hättenschwiler and Vitousek 
2000).

Tannins inhibit soil nitrogen accumulation and the rate 
of terrestrial and aquatic decomposition (Hissett and Gray 
1976). Tannins make plant tissues unpalatable and in-
digestible for animals. Tannins impede digestion of plant 
tissues by blocking the action of digestive enzymes, binding 
to proteins being digested or interfering with protein activ-
ity in the gut wall (Howe and Westley 1990; Lambers 
1993). Tannins play a major role in nutrient dynamics, es-
pecially in that of nitrogen (Kraus et al. 2003) and have an 
integral control on the activity of soil bacteria and fungi 
(Field and Lettinga 1992). A number of experiments in-
dicate that plant-derived polyphenols can affect a variety of 
soil processes some of which could increase nutrient avail-
ability to plants (Hättenschwiler and Vitousek 2000). 
Phenolic substances can comprise a substantial pool of C 
substrates in the soil, which may increase microbial activity, 
resulting in short-termimmobilization of N (Kraus et al. 
2004; Castells et al. 2005; Halvorson et al. 2009).

The decomposition of cellulose provides much of the 
carbon and energy needs of soil microorganisms. Hemicel-
lulose is the sources of energy and nutrients for soil 
microflora. When subjected to microbial decomposition, 
hemicelluloses degrade initially at a faster rate and are first 
hydrolyzed to their component sugars and uronic acids. 
The hydrolysis is brought about by the number of hemi-
cellulolytic enzymes known as “hemicellulase” excreted by 
the microorganisms. On hydrolysis, hemicelluloses are con-
verted into soluble monosaccharide, which is further con-
vened to organic acids, alcohols, CO2 and H2O and uronic 
acids are broken down to pentoses and CO2. As litter de-
composes, microorganisms become inextricably associated 
with the decaying litter creating a substrate- microbe 
complex. The soil microorganisms will decay the litter in 
order to gain nutrients and energy for growth and 
reproduction. During the decomposition process, micro-
organisms convert the carbon structures of fresh residues 
into transformed carbon products in the soil.

Conclusion

The main conclusions can be drawn from the above-

mentioned discussion that the quantitative traits of leaf litter 
is important predictors of decomposition and decom-
position rates increase with greater nutrient availability in 
the forest ecosystems. This discussion also a more complete 
understanding of how quantitative traits of leaf litter influ-
ence litter decomposition, as variations in chemistry can af-
fect nutrient cycling and long-term soil organic matter 
dynamics.

Forests provide a multitude of essential functions 
globally. In addition to supplying building materials for hu-
mans, the forests of the world play a key role in C cycling, 
influence large-scale precipitation patterns, provide clean 
water and provide habitat for most of the world's 
biodiversity. As the demands placed on forest ecosystems 
increase with the growing human population, the need to 
better understand these systems and their individual com-
ponents becomes ever more vital. By studying the role of lit-
ter quantitative traits on decomposition and nutrient cycling 
in forest ecosystems we will gain valuable insight to how 
quantitative traits may influence ecosystem nutrient 
dynamics. Such knowledge will hopefully contribute to fu-
ture forest management and conservation practices.
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