Browse > Article
http://dx.doi.org/10.5657/KFAS.2017.0175

Effects of Environmental Factors on Zoospore Release and Early Growth of the Green Tide Alga Cladophora albida  

Na, Yeon Ju (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
Jeon, Da Vine (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
Lee, Jung Rok (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
Park, Seo Kyoung (Institute of Coastal Management and Technology)
Kim, Young Sik (Department of Marine Biotechnology, Kunsan National University)
Choi, Han Gil (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
Nam, Ki Wan (Department of Marine Biology, Pukyong National University)
Publication Information
Korean Journal of Fisheries and Aquatic Sciences / v.50, no.2, 2017 , pp. 175-182 More about this Journal
Abstract
We examined the effects of environmental factors on zoospore release and germling growth of the green tide alga Cladophora albida under various conditions of temperature${\times}$irradiance (zoospore release), temperature${\times}$irradiance${\times}$ nutrient (germling growth), and a single factor test of salinity. Zoospore release was maximized at $30^{\circ}C$ and $100{\mu}mol\;photons\;m^{-2}s^{-1}$ in the temperature irradiance experiment and at 34 psu in the salinity experiment. Maximum germling growth was observed at $25^{\circ}C$ with $100{\mu}mol\;photons\;m^{-2}s^{-1}$ and PES (Provasoli's Enriched Seawater) in the temperature irradiance nutrient experiment, and at 34 psu in the salinity experiment. Germlings grew faster at higher irradiances for a given temperature level, and also grew faster as salinity increased over the range of 5-34 psu. Overall, optimal environmental conditions for zoospore release were $30^{\circ}C$, $100{\mu}mol\;photons\;m^{-2}s^{-1}$ and 34 psu. Maximal germling growth occurred at $25^{\circ}C$, $100{\mu}mol\;photons\;m^{-2}s^{-1}$, PES, and 34 psu. C. albida blooms are most likely to occur under these optimal environmental conditions, as plentiful zoospore release and rapid germling growth lead to population growth.
Keywords
Cladophora albida; Green tide; Growth; Temperature; Zoospore release;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Choi TS, Kang EJ, Kim JH and Kim KY. 2010. Effects of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed. Algae 25, 17-26. http://dx.doi.org/10.4490/algae.2010.25.1.017.   DOI
2 Dan A, Hirosawa A, Makino K, Ohno M and Critchley AT. 2002. Observation on the effect of salinity and photon fluence rate on the induction of sporulation and rhizoidal formation in the green alga Enteromorpha prolifera (Muller) J. Agardh (Chlorophyta, Ulvales). Fish Sci 68, 1182-1188. http://dx.doi.org/10.1046/j.1444-2906.2002.00553.x.   DOI
3 de Paula Silva PH, McBride S, de Nys R and Paul NA. 2008. Integrating filamentous 'green tide' algae into tropical pondbased aquaculture. Aquaculture 284, 74-80. http://dx.doi.org/10.1016/j.aquaculture.2008.07.035.   DOI
4 Smith JE, Runcie JW and Smith CM. 2005. Characterization of a large-scale ephemeral bloom of the green alga Cladophora sericea on the coral reefs of West Maui, Hawai'i. Mar Ecol Prog Ser 302, 77-91. http://dx.doi.org/10.3354/meps302077   DOI
5 Sokal RR and Rohlf FJ. 1995. Biometry, 3rdEdition. Freeman, NewYork, U.S.A.
6 Gao G, Zhong Z, Zhou X and Xu J. 2016. Changes in morphological plasticity of Ulva prolifera under different environmental condition: A laboratory experiment. Harmful Algae 59, 51-58. http://dx.doi.org/10.1016/j.hal.2016.09.004.   DOI
7 Deng Y, Tang X, Huang B and Ding L. 2011. Life history of Chaetomorpha valida (Cladophoraceae, Chlorophyta) in culture. Bot Mar 54, 551-556. https://doi.org/10.1515/BOT.2011.066.   DOI
8 Deng Y, Tang X, Zhan Z, Teng L, Ding L and Huang B. 2013. Culture observation and molecular phylogenetic analysis on the blooming green alga Chaetomorpha valida (Cladophorales, Chlorophyta) from China. Chin J Oceanol Limnol 31, 552-559. https://doi.org/10.1007/s00343-013-2216-x.   DOI
9 El Shoubaky GA. 2015. On the annually recurrent of green macroalgal bloom phenomenon in Timsah Lake, Suez Canal, Egypt. J Bio Environ Sci 6, 300-309.
10 Song W, Li Y, Fang S, Wang Z, Xiao J , Li R, Fu N, Zhu M and Zhang X. 2015. Temporal and spatial distribution of green algae micro-propagules in the coastal waters of the Subei Shoal, China. Estuar Coast Shelf Sci 163, 29-35. http://dx.doi.org/10.1016/j.ecss.2014.08.006   DOI
11 Tang YZ and Gobler CJ. 2011. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via alleopathy. Harmful Algae 10, 480-488. http://dx.doi.org/10.1016/j.hal.2011.03.003.   DOI
12 Taylor R, Fletcher RL and Raven JA. 2001. Preliminary studies on the growth of selected 'green tide' algae in laboratory culture: effects of irradiance, temperature, salinity and nutrients on growth rate. Bot Mar 44, 327-336. http://dx.doi.org/10.1515/BOT.2001.042.   DOI
13 Xu D, Li F, Gao Z, Wang D, Zhang X, Ye N and Zhung Z. 2013. Facilitative interactions between the green-tide macroalga Monostroma arctium and the red macroalga Porphyra yezoensis. J Exp Mar Biol Ecol 444, 8-15. http://dx.doi.org/10.1016/j.jembe.2013.03.004.   DOI
14 Ye NH, Zhang XW, Mao YZ, Liang CW, Xu D, Zou I, Zhung ZM and Wang QY. 2011. 'Green tides' are overwhelming the coastline of our blue planet: taking the world's largest example. Ecol Res 26, 477-485. http://dx.doi.org/10.1007/s11284-011-0821-8.   DOI
15 Zhang J, Kim JK, Yarish C and He P. 2016. The expansion of Ulva prolifera O.F. Muller macroalgal blooms in the Yellow sea, PR China, through asexual reproduction. Mar Pollut Bull 104, 101-106. http://dx.doi.org/10.1016/j.marpolbul.2016.01.056.   DOI
16 Balkis N, Sivri N, Fraim NL, Balci, Durmus T and Sukatar A. 2013. Excessive growth of Cladophora lateirens (Dillwyn) Kutzing and enteric bacteria in mats in the Southwestern Istanbul coast, Sea of Marmara. IUFS J Biol 72, 43-50.
17 Gao S, Chen XY, Yi QQ, Wang GC, Pan GH, Lin AP and Peng G. 2010. A strategy for the proliferation of Ulva prolifera, main causative species of green tides, with formation of sporangia by fragmentation. PLoS One 5, e8571. http://dx.doi.org/10.1371/journal.pone.0008571.   DOI
18 Gordon DM, Birch PB and McComb AJ. 1980. The effect of light, temperature and salinity on photosynthetic rates of an estuarine Cladophora. Bot Mar 23, 749-755.
19 Gubelit YI and Berezina A. 2010. The causes and consequences of algal blooms: The Cladophora glomerata bloom and the Neva estuary (eastern Baltic Sea). Mar Pollut Bull 61, 183-188. http://dx.doi.org/10.1016/j.marpolbul.2010.02.013.   DOI
20 Bast F, Shimada S, Hiraoka M and Okuda K. 2009. Asexual life history by biflagellate zoids in Monostroma latissimum (Ulotrichales). Aquat Bot 91, 213-218. http://dx.doi.org/10.1016/j.aquabot.2009.06.006.   DOI
21 Cambridge ML, Breema AM and van den Hoek C. 1990. Temperature limits at the distribution boundaries of four tropical to temperate species of Cladophora (Cladophorales: Chlorophyta) in the North Atlantic Ocean. Aquat Bot 38, 135-151. http://dx.doi.org/10.1016/0304-3770(90)90001-2.   DOI
22 Hiraoka M and Enomoto. 1998. The induction of reproductive cell formation of Ulva pertusa Kjellman (Ulvales, Ulvophyceae). Phycol Res 46, 199-203. http://dx.doi.org/10.1111/j.1440-1835.1998.tb00114.x.   DOI
23 Ha DS, Yoo HI, Chang SJ and Hwang EK. 2016. Bloom of a filamentous green alga Cladophora vadorum (Areschoug) Kutzing and nutrient levels at Shangrok beach, Buan, Korea. Korean J Fish Aquat Sci 49, 241-246. http://dx.doi.org/10.5657/KFAS.2016.0241.   DOI
24 Han SJ. Na YJ, Jeon DV, Kim YS, Choi HG and Nam KW. 2016. Effects of environmental factors on the zoospore release and germling growth of the green macroalga Chaetomorpha linum. Ocean Polar Res 38, 47-57. http://dx.doi.org/10.4217/OPR.2016.38.1.047.   DOI
25 Hayakawa Y, Ogawa T, Yoshikawa S, Ohki K and Kamiya M. 2012. Genetic and ecophysiological diversity of Cladophora (Cladophorales, Ulvophyceae) in various salinity regimes. Phycol Res 60, 86-97. http://dx.doi.org/10.1111/j.1440-1835.2012.00641.x.   DOI
26 Human LRD, Adams JB and Allanson BR. 2016. Insights into the cause of an Ulva lactuca Linnaeus bloom in the Knysna Estuary. S Afr J Bot 107, 55-62. http://dx.doi.org/10.1016/j.sajb.2016.05.016.   DOI
27 Lin A, Shen S, Wang J and Yan B. 2008. Reproduction diversity of Enteromorpha prolifera. J Integr Plant Biol 50, 622-629. http://dx.doi.org/10.1111/j.1744-7909.2008.00647.x.   DOI
28 Kamermans P, Malta E, Verschuure JM. Lentz LF and Schrijvers L. 1998. The role of cold resistance and burial for winter survival and spring initiation of an Ulva spp. (Chlorophyta) bloom in a eutrophic lagoon (Veerse Meer lagoon, The Netherlands). Mar Biol (Berl) 131, 45-51. http://dx.doi.org/10.1007/s002270050295.   DOI
29 Lavery PS and McComb AJ. 1991. The nutiritional ecophysiology of Chaetomorpha linum and Ulva rigida in Peel Inlet Western Australia. Bot Mar 34, 251-260. https://doi.org/10.1515/botm.1991.34.3.251.   DOI
30 Le Luherne E, Reveillac E, Ponsero A, Sturbois A, Ballu S, Perdriau M and Le Pape O. 2016. Fish community responses to green tides in shallow estuarine and coastal areas. Estuar Coast Shelf Sci 175, 79-92. http://dx.doi.org/10.1016/j.ecss.2016.03.031.   DOI
31 Lotze HK, Schramm W, Schories D and Worm B. 1999. Control of macroalgal blooms at early developmental stages: Pilayella littoralis versus Enteromorpha spp. Oecologia 119, 46-54. http://dx.doi.org/10.1007/s004420050759.   DOI
32 Lotze HK, Worm B and Sommer U. 2000. Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 85, 46-54. http://dx.doi.org/10.1034/j.1600-0706.2000.890106.x.   DOI
33 Luning K, Kadel P and Pang SJ. 2008. Control of reproduction rhythmicity by environmental and endogenous signals in Ulva pseudocurvata (Chlorophyta). J Phycol 44, 866-873.   DOI
34 Luo MB, Liu F and Xu ZL. 2012. Growth and nutrient uptake capacity of two co-occurring species, Ulva prolifera and Ulva linza. Aquat Bot 100, 18-24. http://dx.doi.org/10.1016/j.aquabot.2012.03.006.   DOI
35 Nelson TA, Nelson AS and Tjoelker M. 2003b. Seasonal and spatial patterns of "green tides" (Ulvoid algal blooms) and related water quality parameters in the coastal of Washington State, U.S.A. Bot Mar 46, 263-275. https://doi.org/10.1515/BOT.2003.024.
36 Malkin SY, Guildford SJ and Hecky RE. 2008. Modeling the growth response of Cladophora in a Laurentian Great Lake to the exotic invader Dreissena and to lake warming. Limnol Oceanogr 53, 1111-1124. http://dx.doi.org/10.4319/lo.2008.53.3.1111.   DOI
37 Mantri VA, Singh RP, Bijo AJ, Kumari P, Reddy CRK and Jha B. 2011. Differential response of varying salinity and temperature on zoospore induction, regeneration and daily growth rate in Ulva fasciata (Chlorophyta, Ulvales). J Appl Phycol 23, 243-250. http://dx.doi.org/10.1007/s10811-010-9544-4.   DOI
38 Moreno-Marin F, Vergara JJ, Perez-Llorens JL, Pedersen MF and Brun FG. 2016. Interaction between ammonium toxicity and green tide development over seagrass meadows: a laboratory study. PloS one 11, e0152971. http://dx.doi.org/10.1371/journal.pone.0152971.   DOI
39 Na YJ, Jeon DV, Lee JR, Kim YS, Choi HG and Nam KW. 2016. Effects of temperature, irradiance, and nutrient type on the fragment growth of green tide alga Cladophora vadorum. Korean J Fish Aquat Sci 49, 657-664. http://dx.doi.org/10.5657/KFAS.2016.0657.   DOI
40 Nelson T, Lee D and Smith B. 2003a. Are 'green tides' harmful algal blooms? Toxic properties of water-soluble extracts from two bloom-forming macroalgae, Ulva fenestrata and Ulvaria obscura (Ulvophyceae). J Phychol 39, 874-879. http://dx.doi.org/10.1046/j.1529-8817.2003.02157.x.   DOI
41 Nelson TA, Haberlin K, Nelson AV, Ribarich H, Hotchkiss R, Van Alstyne KL, Buckingham L, Simunds DJ and Fredrickson K. 2008. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89, 1287-1298. http://dx.doi.org/10.1890/07-0494.1.   DOI
42 Serisawa Y, Yokohama Y, Aruga Y and Tanaka J. 2002. Growth of Ecklonia cava (Laminariales, Phaeophyta) sporophytes transplanted to a locality with different temperature conditions. Phycol Res 50, 201-207. http://dx.doi.org/10.1046/j.1440-1835.2002.00274.x.   DOI
43 Panov VE, Alimov AF, Golubkov SM, Orlova MI and Telesh IV. 2002. Environmental problems and challenges for coastal zone management in the Neva Estuary (Eastern Gulf of Finland). In: Schernewski G and Schiewer U (Eds.) Baltic Coastal Ecosystems. Structure, Function and Coastal Zone Management. Springer-Verlag, Berlin, Germany, 171-184.
44 Pedersen MF and Borum J. 1997. Nutrient control of estuarine macroalgae: growth strategy and the balance between nitrogen requirements and uptake. Mar Ecol Prog Ser 161, 155-163. http://dx.doi.org/10.3354/meps161155.   DOI
45 Provasoli L. 1968. Media and prospects for the cultivation of marine algae. In: Cultures and Collections of Algae. Watanabe A. and Hattori A (Eds.) Proceeding of the US-Japan Conference, Japanese Society for Plant Physiology, Tokyo, Japan, 63-75.
46 Rinehart S, Guidone M, Ziegler A, Schollmeier T and Thornber C. 2014. Overwintering strategies of bloom-forming Ulva species in Narragansett Bay, Rhode Island, U.S.A. Bot Mar 57, 337-341. http://dx.doi.org/10.1515/bot-2013-0122.   DOI
47 Ruangchuay R, dahamat S, Chirapat A, and Notoya M. 2012. Effects of culture conditions on the growth and reproduction of Gut Weed, Ulva intestinalis Linnaeus (Ulvales, Chlorophyta). Songklanakarin J Sci Technol 34, 501-507.
48 Shea R and Chopin T. 2007. Effects of germanium dioxide, an inhibitor of diatom growth, on the microscopic laboratory cultivation stage of the kelp, Laminaria saccharina. J Appl Phycol 19, 27-32. http://dx.doi.org/10.1007/s10811-006-9107-x.   DOI