• Title/Summary/Keyword: nutrient nitrogen

Search Result 1,586, Processing Time 0.023 seconds

Comparison of Soil Physicochemical Properties According to the Sensitivity of Forest Soil to Acidification in the Republic of Korea (우리나라 산림토양의 산성화 민감도평가와 그에 따른 토양 이화학적 특성 비교분석)

  • Lee, Ah Lim;Koo, Namin
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.2
    • /
    • pp.157-168
    • /
    • 2020
  • The sensitivity of forest soil to acidification in the Republic of Korea (ROK) was evaluated based on pHH2O, cation exchange capacity (CEC), and base saturation (BS). Sensitivity to acidification was categorized into three grades: adequate level (AL, pH ≧ 4.2, CEC ≧ 15cmol/kg, BS ≧ 15%), caution level (CL, at least one indicator is below AL), and severe Level (SL, all three indicators are below AL). Soil samples were collected from the 65 stationary monitoring plots (40 × 40 ㎢), distributed throughout ROK. Only 19% of soil samples were classified as AL, while 66% and 15% were CL and SL, respectively. The median of pHH2O, CEC, BS, and Ca/Al indicator in AL soils was pH 4.64, 20.7cmol/kg, 29%, and 6.3, respectively. Moreover, BCex (K+, Mg2+, Ca2+) and available phosphorus (AP) concentration compared with a threshold value and molar ratio of BCex and AP to total nitrogen (TN) was high. This indicates that AL soils have a good nutrient condition. The molar Ca/Al ratio, an indicator for toxicity of exchangeable aluminum (Alex), was more than 1, indicating no negative impact of Alex on plant growth. On the contrary, the median of pHH2O, CEC, and BS in SL soils was pH 4.02, 13.2cmol/kg, and 10%, respectively. The Ca/Al index was less than 0.6, which indicates that negative impacts of Alex on plants were high. Furthermore, both the concentration of BCex in SL soils and the BCex/TN ratio were the lowest among the three acidity degrees. This shows that SLsoils can be degraded by soil acidification compared with less acidic soils.

Relationship between Environmental Characteristics and Pigment Composition and Concentrations of Porphyra yezoensis Ueda in the Southwestern Coast of the Korean Peninsula (남서해역에서 양식되는 방사무늬김(Porphyra yezoensis Ueda)의 색소조성과 농도에 영향을 미치는 해양환경 특성)

  • Kim, Jeong Bae;Lee, Won-Chan;Hong, Sokjin;Shim, Jeong Hee;Park, Jung-Im;Park, Jihye;Lee, Eu Gene
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.3
    • /
    • pp.200-209
    • /
    • 2012
  • The effect of water temperature, salinity and water column nutrient contents on pigment composition and concentration of purple lavers were studied at the main purple lavers production areas in Southwestern coast of Korea, during January to March, 2011. Water temperature was between 3.0 and $11.3^{\circ}C$. Salinity range was between 32.7 and 34.7, those were lower St. 1 and St. 6, which were at close to the seashore. Water column dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP) and silicate concentrations were $1.73{\sim}12.84{\mu}M$, $0.07{\sim}0.67{\mu}M$ and $4.93{\sim}18.29{\mu}M$, respectively. Chl a concentration was between 0.41 and $9.14{\mu}g\;L^{-1}$, and it was the highest at St. 1 during January. Photosynthetic pigment of fucoxanthin was dominant at all sites, which showed its highest concentration ($0.06{\sim}3.41{\mu}g\;L^{-1}$) at St. 1 on January. Water column DIN concentration was higher at January during low salinity period at all sites, but it was low at St. 1. Photosynthetic pigment of Chl a, PE and PC concentration of porphyra blades was between $1,173{\sim}8,124{\mu}g\;DW\;g^{-1}$, $3,281{\sim}10,076{\mu}g\;DW\;g^{-1}$, $388{\sim}1,346{\mu}g\;DW\;g^{-1}$, respectively. The concentration was relatively high at the St. 2 and St. 3. The pigment concentration of porphyra blades was higher at only Porphyra yezoensis was cultured than at Porphyra yezoensis and Porphyra seriata were cultured. The pigment concentration of porphyra blades was higher at St. 2 and St. 3 in only Porphyra yezoensis was cultured. This study shows that pigment concentration of porphyra blades may depend on habitat environment and culture methods.

Trophic State Index (TSI) and Empirical Models, Based on Water Quality Parameters, in Korean Reservoirs (우리나라 대형 인공호에서 영양상태 평가 및 수질 변수를 이용한 경험적 모델 구축)

  • Park, Hee-Jung;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.14-30
    • /
    • 2007
  • The purpose of this study was to evaluate trophic conditions of various Korean reservoirs using Trophic State Index (TSI) and predict the reservoir conditions by empirical models. The water quality dataset (2000, 2001) used here were obtained from the Ministry of Environment, Korea. The water quality, based on multi-parameters of dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN), suspended solid (SS), Secchi depth (SD), chlorophyll-${\alpha}$ (CHL), and conductivity largely varied depending on the sampling watersheds and seasons. In general, trophic conditions declined along the longitudinal axis of headwater-to-the dam and the largest seasonal variations occurred during the summer monsoon of July-August. Major inputs of TP occurred during the monsoon (r=0.656, p=0.002) and this pattern was similar to solid dynamics of SS (r=0.678, p<0.001). Trophic parameters including CHL, TP, SD, and TN were employed to evaluate how the water systems varies with season. Trophic State Index (TSI, Carlson, 1977), based on TSI (CHL), TSI (TP), and TSI (SD), ranged from mesotrophic to eutrophic. However, the trophic state, based on TSI (TN), indicated eutrophic-hypereutrophic conditions in the entire reservoirs, regardless of the seasons, indicating a N-rich system. Overall, nutrient data showed that phosphorus was a primary factor regulating the trophic state. The relationships between CHL (eutrophication index) vs. trophic parameters (TN, TP, and SD) were analysed to develop empirical models which can predict the trophic status. Regression analyses of log-transformed seasonal CHL against TP showed that the value of $R^2$ was 0.31 (p=0.017) in the premonsoon but was 0.69 (p<0.001) during the postmonsoon, indicating a greater algal response to the phosphorus during the postmonsoon. In contrast, SD had reverse relation with TP, CHL during all season. TN had weak relations with CHL during all seasons. Overall, data suggest that TP seems to be a good predictor for algal biomass, estimated by CHL, as shown in the empirical models.

Spatial and Temporal Variability of Water Quality in Geum-River Watershed and Their Influences by Landuse Pattern (금강 수계의 시.공간적 수질특성과 토지이용도의 영향)

  • Han, Jeong-Ho;Bae, Young-Ju;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.3
    • /
    • pp.385-399
    • /
    • 2010
  • The objective of this study was to analyze long term temporal trends of water chemistry and spatial heterogeneity for 83 sampling sites of Geum-River watershed using water quality dataset during 2003~2007 (obtained from the Ministry of Environment, Korea). The water quality, based on multi-parameters of temperature, dissolved oxygen (DO), biochemical oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (TN), total phosphorus (TP), and electric conductivity (EC), largely varied depending on the landuse patterns, years and seasons. The watershed was classified into three different landuse types: forest stream (Fo), agricultural stream (Ag), and urban stream (Ur). Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of summer monsoon rain. Conductivity, used as a key indicator for an ionic dilution during rainy season, and nutrients of TN and TP had inverse functions of precipitation. BOD, COD decrease during the rainy season. Minimum values in the conductivity, TN, and TP were observed during the summer monsoon, indicating an ionic and nutrient dilution of river water by the rainwater. In contrast, major inputs of suspended solids (SS) occurred during the period of summer monsoon. The landuse patterns analyses, based on the variables of BOD, COD, TN, TP and SS, showed that the values were greater in the agricultural stream (Ag) than in the forest stream (Fo) and urban stream (Ur) and that water quality was worst in the urban stream (Ur). The overall dataset suggest that efficient water quality management, especially in Gap-Stream and Miho-Stream, which showed worst water quality is required along with some of urban stream (Ur), based on the analysis of landuse patterns.

Determination of Application Rate of Composted Pig Manure for Wetland Rice (논토양에서 돈분톱밥퇴비 시용량 결정에 관한 연구)

  • Lee, Sang-Min;Ryu, In-Soo;Lee, Choon-Soo;Park, Yang-Ho;Um, Myung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.182-191
    • /
    • 1999
  • A study was conducted for the determination of application rate of pig-dung composted with sawdust (referred as pig manure hereafter) for wetland rice. The study involved the field experiments with the cultivation of rice under different rates of application of pig manure in combination of different rates of chemical fertilizers, in a wetland rice soil. The field experiment involved following treatments : (I) Without fertilizer, (II) Standard rate of chemical fertilizers based on soil testing($98-73-71kg\;ha^{-1}$ as $N-P_2O_5-K_2O$), (III) $2.1Mg\;ha^{-1}$ of pig manure $>+80-37kg\;ha^{-1}$ of $N- K_2O$ as chemical fertilizer(Less $N-P_2O_5-K_2O$ contained in the compost), (IV) $4.2Mg\;ha^{-1}$ of pig manure+ $62-3kg\;ha^{-1}$ of $N-K_2O$as chemical fertilizer(Less $N-P_2O_5-K_2O$ contained in the compost), (V) $10Mg\;ha^{-1}$ of pig manure+ Treatment(II), (VI) $20Mg\;ha^{-1}$ of pig manure +Treatment(II). Number of tillers in treatment (I) were higher than other treatments in tillering and panicle formation stage. After heading stage, treatments (V) and (VI) have higher number of tillers, but treatment (III) and (IV) have fewer number of tillers during all growing stage. Uptake of NPK in rice plants was higher in treatment (VI), but the efficiency of N, P and K was higher in treatment (I), (III) and (IV). The yield of unhulled rice were in order of tretments (VI)>(V)>(IV)>(II)>(III), although the difference was not statistically significant. Inorganic nitrogen, available P and exchangable K contents in soil were highest at tillering stage in all treatments and became low from panicle formation to harvest stage. Available P in soil was increased by the application of pig manure upto 20 cm depth. Exchangeable cation contents in 40 to 60 cm soil depth was much higher in treatment (VI) than in other treatments. Treatment (V) and (VI) showed much higher losses of N. $P_2O_5 $ and $K_2O$ than other treatment. Though treatment (VI) tended yield higher than in other treatments, showed lodging and occurrence of leaf and neck blast in this treatment. Yield of unhulled rice in treatment (IV) was not significant statistically and reduced nutritional losses. It is conclude that treatment (IV) seems to be the most reasonable one for the application of pig manure in combination of chemical fertilizers.

  • PDF

Interactions between Oxidative Pentose Phosphate Pathway and Enzymes of Nitrate Assimilation "Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" and Ammonium Reassimilation "Glutamine Synthetase$_2$" as affected by $No_3$-Concentration ($No_3$-수준이 Oxidative Pentose Phosphate Pathway와 질산동화작용 효소"Nitrate Reductase, Nitrite Reductase, Glutamine Synthetase$_1$" 및 암모늄재동화작용 주요효소"Glutamine Synthetase$_2$"활성도의 상호관계에 미치는 영향)

  • Sohn, Sang-Mok;Michael James Emes
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.37 no.5
    • /
    • pp.468-475
    • /
    • 1992
  • In order to understand more clearly the integration between N-assmilation and C-metabolism in relation to N fertilization, a pot experiment with 5 different level of N fertilization(0, 5, 10, 25, 50 mM NO$_3$$_{[-10]}$ ) was conducted in Manchester, U.K. The peas (Pisum sativum L., cv. Early Onward) were sown in vermiculate (5 cm depth) and cultivated for 6 days under temperature controlled dark room conditions ($25^{\circ}C$). The plants received frequent irrigation with a nutrient solution: it was fertilized every 2 days, 3 times a day at 10h, 13h, 16h respectively. Elevated NO$_3$$^{[-10]}$ concentration, the activity levels of NR, NiR, total GS(crude extract), GS$_2$(plastid) in both root and shoot were increased and reached the peak in 5~25 mM, except NiR specific activity which increased its activity continually until 50 mM NO$_3$$^{[-10]}$ treatment. Total activities of GS (crude extract) in both root and shoot became higher than those of GS$_2$(Plastid), and the activity ratios of total GS in the crude extract and GS$_2$ in the plastids were 3.0 to 4.3 in root, but 3.2 to 10.6 in shoot. It was concluded that the reductants and A TP from OPPP itself should be enough to achieve the high rate of NR, NiR, GS$_1$, GS$_2$ in plant root and shoot for reduction or assimilation of nitrogen, but these enzyme activities might be inhibited by an excess of NO$_3$$^{[-10]}$ influx over the reduction capacity.

  • PDF

Effects Of Phosphate Application Rate on the Growth Characteristics, Yield and Feed Value of Whole Crop Azuki bean in Jeju Island (제주지역에서 인산시비량 차이에 따른 청예팥의 생육반응, 수량 및 사료가치 변화)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Khil;Kang, Yong-Chul;Cho, Young-Il;Ko, Mi-Ra
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • This study was determined to the growth characteristic, yield and chemical content of Azuki bean(Vigna angularis W.F. $W_{IGHT}$) based on five phosphate rates (0, 40, 50, 120, 160, 200kg/ha) from May, 2002 to August, 2002 in Jeju province. Plant height was 80.7cm at 0kg/ha of phosphate level md, as phosphate rates were increased to 160kg/ha and 200kg/ha, lengthened 88.8cm and 88.9cm, respectively, but between the two phosphat levels were no significance(P>0.05 or 0.0l). Numbs. of branches and leaves per plant, stem diameter, and weight of leaves and stems per plant were the same response with plant height. Fresh forage, dry matter, crude protein, and TDN(total digestible nutrient) yield at the control were 23.8MT/ha, 3MT/ha, 0.5MT/ha and 1.8MT/ha, respectively, at the 200kg/ha plot were 47.3MT/ha, 7.2MT/ha, 1.3MT/ha, and 4.7MT/ha, respectively, as phosphate rate was increased. As phosphate rate increased from 0kg/ha to 200kg/ha, the content of crude protein, crude fat NFE(nitrogen free extract) and TDN increased 15.2%~18.6%, 3.4%~4.5%, 41.4%~45.5% and 58.3%~65.5%, respectively, whereas the content of crude fiber and crude ash were decreased 31.5%~24.8% and 8.1%~6.6%, respectively.

Effect of Seeding Dates on the Growth Characteristics, Yield and Feed Value of Whole Crop Azuki bean in Jeju Island (제주지역에서 파종기에 따른 청예팥의 생육반응.수량 및 사료가치 변화)

  • Cho, Nam-Ki;Kang, Young-Kil;Song, Chang-Ki;Kang, Yong-Chul;Cho, Young-Il;Go, Mi-Ra
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.23 no.1
    • /
    • pp.7-12
    • /
    • 2003
  • This study was conducted to determine the influence of seeding date (May 3, 13, 23, June 2, 12) on the growth characteristics yield and feed value Azuki bean(Vigna angularis W.F. Wight) from May 3, 2002 to August 3, 2002 in Jeju province. Plant height was the longest (84cm) when seeded on 13 May and was the shortest (48.4cm) when seeded on 12 June. Numbers of branches and leaves per plant, stem diameter and weight of leaves and stems per plant were the same trend with plant height. Fresh forage, fry matter, crude protein and TDN(total digestible nutrient) yield per ha at were increased to 54.6MT, 7.7MT, 1.4MT and 4.5MT, respectively, whereas decreased as seeding date was delayed and then at seeding on 12 June were decreased to 11.5MT/ha 2.12MT/ha 0.4MT/ha and 1.3MT/ha, respectively The content of crude protein, crude fat, NFE(nitrogen free extract) and TDN were incresed 17.6%∼21.3%, 3.3%∼4.5%, 34.3%∼41.4% and 56%∼64.8%, respectively, as seeding was delayed from 3 May to 13 June. Whereas the content of crude fiber and crede ash were decreased 33.8%∼23.5% and 11%∼9.3%, respectively.

Effect of Undegradable Dietary Protein Level and Plane of Nutrition on Lactation Performance in Crossbred Cattle

  • Kumar, M. Ravi;Tiwari, D.P.;Kumar, Anil
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1407-1413
    • /
    • 2005
  • An experiment was conducted in order to assess the effect of level of RDP:UDP ratio and level of feeding concentrate on milk yield, milk composition and nutrient utilization in lactating crossbred cattle. Twenty four medium producing (-10 kg/d, 45 to 135 days postpartum) lactating crossbred cows were divided into four groups of six animals each in a 2${\times}$2 factorial completely randomized design. The cows in group 1 were fed concentrate mixture I containing 59:41 RDP:UDP ratio (low UDP) at normal plane (LUDP+NP), in group 2 were fed low UDP ration at 115% of NRC (1989) requirements (LUDP+HP), whereas cows in group 3 were fed concentrate mixture II containing 52:48 RDP:UDP ratio (high UDP) at normal plane (HUDP+NP) and in group 4 were fed high UDP ration at 115% of NRC (1989) requirements (HUDP+HP). Green jowar was fed ad libitum as the sole roughage to all the animals. The experimental feeding trial lasted for 105 days. The total dry matter intake (DMI), DMI/100 kg body weight, DMI/kg $W^{0.75}$, digestibilities of DM, OM, CP, CF, EE and NFE and intakes of TDN and DCP did not differ significantly among the different groups and also due to both UDP level and plane of nutrition and also due to their interaction. The total dry matter intake varied from 145 g in group 1 (LUDP +NP) to 152.57 g/kg $W^{0.75}$ in group 2 (LUDP+HP) diet. However, increase in milk yield with increased UDP level and also with increased plane of nutrition was observed consistently throughout the experimental period. The average milk yield was 7.66, 8.15, 8.64 and 9.35 kg in groups 1, 2, 3 and 4, respectively and there was no significant difference in milk yield among different groups of cows. The overall daily average milk yields in cows fed with low and high UDP diets were 7.91 and 8.99 kg, respectively and at normal and higher plane of feeding the milk yields were 8.15 and 8.75 kg/day, respectively. Thus, there was 13.65% increase in milk yield due to high UDP level and 7.36% due to higher plane of feeding. The daily 4% FCM yields were 9.20 kg for low UDP diet and 10.28 kg for high UDP diet, whereas it was 9.11 kg at normal plane of feeding and 10.37 kg at higher plane of feeding. Fat yields for the corresponding treatment groups were 0.37, 0.43, 0.41 and 0.48 kg, respectively. The 4% FCM yield and also fat yield did not differ significantly among different dietary treatments and also due to UDP level and plane of nutrition, however, 4% FCM yield was increased by 11.74% with high UDP level and 13.83% with higher plane of feeding. The values for total solids, fat, lactose, solids-not-fat and gross energy contents in milk differed significantly (p<0.05) among the different groups and were significantly (p<0.05) higher in milk of cows fed LUDP+HP diet followed by HUDP+HP diet. Total solids (14.65 and 13.83%), lactose (5.44 and 4.92%), solids-not-fat (9.44 and 8.83%) and gross energy (887 and 838 kcal/kg) of milk decreased significantly (p<0.05) with increased UDP level while total solids (13.84 and 14.64), fat (4.84 and 5.36%) and gross energy (832 and 894 kcal/kg) increased significantly (p<0.05) with increase in plane of feeding. Gross and net energetic efficiencies and also gross and net efficiencies of nitrogen utilization for milk production were not significantly different among different groups and also were not affected significantly due to either UDP levels or plane of feeding. Results of the present study suggest that, increasing UDP level from 41% to 48% of CP in concentrate mixture and also increasing plane of feeding from normal (100%) to 115% of NRC requirements maintain a consistently higher milk production.

Spatio-Temporal Distribution of Nutrients in the Surface Waters of Deukryang Bay 1. Seasonal Variation of Nutrients and Limiting Factors for Primary Production (득량만 표층수중 영양염류의 시공간적 분포특성 -1. 영양염류의 계절변화와 기초생산 제한인자-)

  • YANG Han-Soeb;KIM Soung-Soo;KIM Guebuem
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.4
    • /
    • pp.475-488
    • /
    • 1995
  • In order to see the seasonal variation of nutrients and the limiting factors to the primary production in Deukryang Bay, both dissolved inorganic nutrients and salinity were measured in the surface waters during the periods from July 1992 to March 1993. The mean value of salinity was the lowest in ?all and the highest in early spring. Dissolved inorganic nitrogen (DIN) was the highest in winter and the lowest in summer. However, both phosphate and silicate were the highest in summer and the lowest in fall. Salinity was generally higher in the outer region than in the inner region of the bay.DIN content was nearly depleted (less than $2{\mu}M$) in summer. From fall to spring, DIN content was nearly depleted in the inner region and relatively high in the outer region of the Day. Phosphate was the highest in summer showing an opposite distribution pattern to salinity, and it was nearly depleted (less than $0.1{\mu}M$) in fall and winter. In spring, however, phosphate content was slightly high in the outer region. Silicate content showed an opposite distribution pattern to salinity in summer. in other seasons, However, the distribution pattern of silicate was similar to the salinity. DIN seemed to be a limiting factor for the primary production at all area of the bay in summer and at the inner region in other season. However, phosphate seemed to be a limiting factor at all area of the bay in fall and winter and at the inner region in spring. Silicate may limit the production of diatoms at the inner region of the bay in winter and spying. Both phosphate and silicate showed a good inverse relationship with salinity in summer, which indicates inputs of these nutrients from the freshwater runoff. In the other seasons, both nitrate and silicate showed a positive linear relationship with salinity in the outer region of the bay, suggesting that these two nutrients were mainly supplied by the inflow of the offshore costal water which had high nitrate content associated with vertical mixing.

  • PDF