• Title/Summary/Keyword: nutrient nitrogen

Search Result 1,586, Processing Time 0.024 seconds

Effect of Different Parts and Growing Stages of Miscanthus sacchariflorus as a non-Food Resource that does not Contribute towards Climate Change on Metabolic Availability in Ruminants (반추가축전용 기후변화대응 비식량자원 거대억새의 생육부위 및 시기에 따른 체내 이용가치 비교 연구)

  • Oh, Seong-Jin;Song, Wan-Sun;Kim, Mi-So;Choi, Sol-Ip;Lee, Su-Rok;Kim, Eun-Sung;Kim, Yong-Soo;Choi, Nag-Jin
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.3
    • /
    • pp.437-450
    • /
    • 2013
  • Miscanthus sacchariflorus var. No. 1 has been newly developed in Korea. This study was conducted to assess the feed value of M. sacchariflorus var. No. 1 at different growth and harvesting time. Total 3 different miscanthus - 1y4m (first shoot and harvested at 4 month), 2y4m (second shoot and harvested at 4 month) and 2y8m (second shoot and harvested at 8 month). Two experiments were carried out, In vitro rumen simulated fermentation and In situ dry matter digestibility (DMD). Ruminal pH at in vitro fermentation were higher in M. sacchariflorus var. No. 1 treatments compared to the rice straw (RS). In volatile fatty acid production, 1y4m resulted in higher acetate production than the other M. sacchariflorus var. No. 1 at higher maturity stages. Significant differences among treatments were observed in propionate and total volatile fatty acid (VFA) productions at 9, 24 and 48 h of incubation times. Higher ammonia nitrogen productions were found as increased maturity of M. sacchariflorus var. No. 1. At In situ experiment, high DMD was detected in the order of RS (60.51%) > 1y4m (57.65%) > 2y4m (57.63%) > 2y8m (46.28%). The results from this study indicate that young and early harvested M. sacchariflorus var. No. 1 are able to improve its nutrient values in the ruminant animal.

Effects of Iron and chelators on Primary production and Nitrogen New Production in the Equatorial Pacific Upwelling System (적도 태평양 용승계에서 철과 킬레이트 화합물이 일차생산과 질소 신생산에 미치는 영향)

  • YANG, SUNG RYULL
    • 한국해양학회지
    • /
    • v.28 no.1
    • /
    • pp.52-68
    • /
    • 1993
  • Effects of iron and/or chelator addition on primary production in the equatorial Upwelling system were studied during the TOGA(Tropical oceans and Global Atmosphere) and EPOCS (Equatorial Pacific ocean Climate Studies) cruises in June and November-December of 1989. Changes in the phytoplankton biomass and the degree of iron stress were estimated using the changes in vivo fluorescence before and after the addition of DCMU, which is an inhibitor of photosynthetic electron transposer system. Nitrate uptake was measured using /SUP 45/N labeled KNO$_3$ to estimate the new production. When samples were taken from the Upwelling area where nitrate concentration was higher than 5 uM, there were significant differences between the control and cheated iron treatments in vivo fluorescence and in nitrate uptake capacity. However, CFC (Cellular fluorescence capacity) did not show any significant difference between the control and treatments until nutrient limitation becomes severse and cells become shifted-down. Outside of the Upwelling area where surface nitrate concentration was low (below 0.5 uM), there was no significant difference between the control and treatments in vivo fluorescence and CFC. It is evident that primary and new production in the equatorial Pacific Upwelling region are limited by the availability of iron. However, the physiology of phytoplankton indigenous to this region does not appear to be iron stressed judging from CFC values.

  • PDF

Municipal Wastewater Treatment and Microbial Diversity Analysis of Microalgal Mini Raceway Open Pond (미세조류 옥외 배양시스템을 이용한 도시하수 정화 및 미생물 군집다양성 분석)

  • Kang, Zion;Kim, Byung-Hyuk;Shin, Sang-Yoon;Oh, Hee-Mock;Kim, Hee-Sik
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.192-199
    • /
    • 2012
  • Microalgal biotechnology has gained prominence because of the ability of microalgae to produce value-added products including biodiesel through photosynthesis. However, carbon and nutrient source is often a limiting factor for microalgal growth leading to higher input costs for sufficient biomass production. Use of municipal wastewater as a low cost alternative to grow microalgae as well as to treat the same has been demonstrated in this study using mini raceway open ponds. Municipal wastewater was collected after primary treatment and microalgae indigenous in the wastewater were encouraged to grow in open raceways under optimum conditions. The mean removal efficiencies of TN, TP, COD-$_{Mn}$, $NH_3$-N after 6 days of retention time was 80.18%, 63.56%, 76.34%, and 96.74% respectively. The 18S rRNA gene analysis of the community revealed the presence of Chlorella vulgaris and Scenedesmus obliquus as the dominant microalgae. In addition, 16S rRNA gene analysis demonstrated that Rhodobacter, Luteimonas, Porphyrobacter, Agrobacterium, and Thauera were present along with the microalgae. From these results, it is concluded that microalgae could be used to effectively treat municipal wastewater without aerobic treatment, which incurs additional energy costs. In addition, municipal wastewater shall also serve as an excellent carbon and nitrogen source for microalgal growth. Moreover, the microalgal biomass shall be utilized for commercial purposes.

The Cultural Conditions Affecting the Mycelial Growth of Grifola umbellata (저령의 균사생장에 영향을 미치는 배양조건)

  • Shim, Jae-Ouk;Son, Seo-Gyu;Kim, Yong-Ho;Lee, Youn-Su;Lee, Ji-Yul;Lee, Tae-Soo;Lee, Sang-Sun;Lee, Min-Woong
    • The Korean Journal of Mycology
    • /
    • v.25 no.3 s.82
    • /
    • pp.209-218
    • /
    • 1997
  • This study was carried out to obtain the basic data for artificial culture of Grifola umbellata. The optimal condition for the mycelial growth was obtained at $20^{\circ}C$ and pH 4, respectively. G. umbellata showed the most favorable growth on the Hoppkins media. Carbon sources such as glucose, fluctose and manitol were favorable for stimulating a mycelial growth of G. umbellata. Valine, one of nitrogen sources also appeared to be favorable to a mycelial growth. The optimum C/N ratio was about 30:1 in case that 1% glucose as carbon source was mixed with the basal media. Lactic acid as organic acid was most favorable to the mycelial growth. Also, thiamine-Hcl as vitamin source was favorable. The mineral nutrient of $FeSO_4$ or $MgSO_4$ was most favorable to G. umbellata, and its optimal concentration was about 0.01% in $FeSO_4$ and 0.1 % in $MgSO_4$ respectively. Among 4 different cereal extract media, polished rice extract medium which was mixed with silkworm pupae was most suitable for a favorable growth of G. umbellata.

  • PDF

Water Quality of Streams in Some Agricultural Areas of Different Agricultural Practices along Nakdong River Basin (낙동강 유역 주요 농업지대 소하천 수질의 영농형태별 비교)

  • Chung, Jong-Bae;Kim, Bok-Jin;Kim, Jeong-Kook;Kim, Min-Kyeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.2
    • /
    • pp.140-144
    • /
    • 1998
  • A survey on four tributary streams in agricultural areas along Nakdong River was carried out to evaluate the effect of agricultural practices on the quality of streamwater. Typicalpaddy and upland farmings were major agriculturalpractice in two survey areas. Apple orchards were located along Imgo -Cheon. Intensive farming in plastic film house was conducted along the Habin cheon. Electriclal condutivity and nutrient contents were measured. Comparing to the reference water sample collected from very upper part of Yangsang -Cheon in Moonkyong, water in the streams studied were quite polluted and such pollution could be due to the farmings conducted along the streams. Phosphorus content were higher than the minimum level for eutrophication (0.01-0.05 mg/L). Nitrogeon content were also significantly high in many sites to cause harmful effects on crops when normalfertilizer level was applicated. Among the four stream, water quality in paddy area were relatively less polluted. High nitrogen level in Imgo-Cheon and high level of EC in Habin-Cheon were problematic. As farming is the major sources of pollution in the streams studied, this are traceable to the agricultural nonpoint sources. To maintain water quality of the stream, the agricultural nonpoint source along thributary streams should be properly controlled.

  • PDF

Effect of Microorganism Mixture Application on the Microflora and the Chemical Properties of Soil and the Growth of Vegetables in Greenhouse (미생물혼합제제 처리가 토양의 미생물상과 화학적 특성 및 시설 채소 생육에 미치는 영향)

  • Ryu, Il-Hwan;Jeong, Su-Ji;Han, Seong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.368-374
    • /
    • 2012
  • BACKGROUND: The urgency of feeding the world's growing population while combating soil pollution, salinization and desertification requires suitable biotechnology not only to improve crop productivity but also to improve soil health through interactions of soil nutrient and soil microorganism. Interest in the utilization of microbial fertilizer has increased. A principle of nature farming is to produce abundant and healthy crops without using chemical fertilizer and pesticides, and without interrupting the natural ecosystem. Beneficial microorganisms may provide supplemental nutrients in the soil, promote crop growth, and enhance plant resistance against pathogenic microorganisms. We mixed beneficial microorganisms such as Bacillus sp. Han-5 with anti-fungal activities, Trichoderma harziaum, Trichoderma longibrachiatum with organic material degrading activity, Actinomycetes bovis with antibiotic production and Pseudomonas sp. with nitrogen fixation. This study was carried out to investigate the mixtures on the soil microflora and soil chemical properties and the effect on the growth of lettuce and cucumber under greenhouse conditions. METHODS AND RESULTS: The microbial mixtures were used with each of organic fertilizer, swine manure and organic+swine manure and compared in regard to changes in soil chemical properties, soil microflora properties and crop growth. At 50 days after the treatment of microorganism mixtures, the pH improved from 5.8 to 6.3, and the EC, $NO_3$-Na and K decreased by 52.4%, 60.5% and 29.3%, respectively. The available $P_2O_5$ and $SiO_2$ increased by 25.9% and 21.2%, respectively. Otherwise, the population density of fluorescent Pseudomonas sp. was accelerated and the growth of vegetables increased. Moreover, the population density of E. coli and Fusarium sp., decreased remarkably. The ratio of bacteria to fungi (B/F) and the ratio of Actinomycetes bovis to fungi (A/F) increased 2.3 (from 272.2 to 624.4) and 1.7 times (from 38.3 to 64), respectively. Furthermore, the growth and yield of cucumber and lettuce significantly increased by the treatment of microorganism mixtures. CONCLUSION(S): These results suggest that the treatment of microorganism mixtures improved the chemical properties and the microflora of soil and the crop growth. Therefore, it is concluded that the microorganism mixtures could be good alternative soil amendments to restore soil nutrients and soil microflora.

Effects of Number of Seeds per Hill in Dibbling on Growth Character, Yield and Feeding Value in Jeju Native Sorghum (제주재래수수의 점파립수에 따른 사료수량 및 조성분 분석)

  • 조남기;강영길;송창길;전용철;오장식;조영일;박성준
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.24 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • Jeju native sorghum was grown at six spot seeding rates (1, 2, 3, 4, 5 and 6) from April 3 to september 6, 2000 in Jeju island to determine influence of number of seeds per hill in dibbling on agronomic characters, forage yield and qualities. Days to heading was increased as number of seeds per hill was increased. Plant height with three seeds per hill (206.7 cm) was the longest, while with six seeds per hill (175.2 cm) was the shortest. Fresh forage, dry matter and crude protein yield and total digestible nutrient (TDN) were the greatest at the three seeds per hill (48.1, 10.1, 0.9, 5.1 MT/ha). Crude protein, crude fat and nitrogen-tree extract (NFE) increased with the number of seeds per hill increased but crude fiber and crude ash decreased.

Analysis of Eutrophication Based on Chlorophyll-a, Depth and Limnological Characteristics in Korean Reservoirs (육수학적 특성에 따른 국내 저수지의 부영양화 유형분석 -엽록소 a와 수심을 중심으로)

  • Kim, Ho-Sub;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.213-226
    • /
    • 2004
  • The present study was conducted to analyze the pattern of eutrophication of Korean reservoir with Chl. a concentration and morpho-physical parameters, and to valuate water quality characteristics of the classified types. The collected data from 486 reservoirs were classified as four types, with the Chl- a concentration (25 ${\mu}g\;L^{-1}$) and the ratio of water storage/surface area (mean depth, 7.5 m). According to OECD criteria and trophic state index based on Chl-a concentration, 34.3 and 72.8% of selected reservoirs appeared to be eutrophic, respectively. Characteristics of TYPE ll reservoirs generally showed high Chl-a concentration, relatively old age, small DA/LA ratio, short Hydraulic retention time, large paddy field and field to watershed ratio, and high pollutant loading compared to other types of reservoirs. The difference of TP concentration was greater than that of TN concentration in reservoir water among classified four types. Based on TN/TP ratio (by weight), phosphorus was limiting nutrient in all types and more closely related with Chl- a concentration than nitrogen. Significant decrease of Chl- a concentration with increase of TN/TP ratio observed only in reservoirs with Chl-a concentration > 25${\mu}g\;L^{-1}$. Although drainage area is believed to be a factor that is related to the generation load of pollutants in the watershed, it did not show any significant relationship with water quality parameters. Morphometric characteristics such as depth and age of reservoir as well as type of land use patterns in the watershed was among important parameters for the assessment of water quality characteristics in Korean reservoirs.

PHOTOCATALYTIC ANTIEUNGAL ACTIVITY AGAINST CANDIDA ALBICANS BY $TiO_2$ COATED ACRYLIC RESIN DENTURE BASE

  • Yang Ji-Yeon;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.284-294
    • /
    • 2006
  • Statement of problem. Proliferation of Candida albicans is primarily within the plaque on the fitting surface of the denture rather than on the inflamed mucosa. Consequently, the treatment of the denture is equally important as treatment of the tissue. Cleansing and disinfection should be efficiently carried-out as the organisms can penetrate into the voids of the acrylic resin and grow in them, from which they can continue to infect and reinfect bearing tissues. Purpose. The purpose of this study was to evaluate the applicability of photocatalytic reaction to eliminate Candida albicans from acrylic resin denture base, and to investigate the anti-fungal effect with various UVA illumination time. Materials and Methods. The specimens were cured by the conventional method following the manufacturer's instruction using thermal polymerized denture base resin (Vertex RS: Dentimex, Netherlands). $TiO_2$ photocatalyst sol(LT), which is able to be coated at normal temperature, was made from the Ti-alkoxide progenitor. The XRD patterns, TEM images and nitrogen absorption ability of the $TiO_2$ photocatalyst sol(LT) were compared with the commercial $TiO_2$ photocatalyst P-25. The experimental specimens were coated with the mixture of the $TiO_2$ photocatalyst sol(LT) and binder material (silane) using dip-coater, and uncoated resin plates were used as the control group. Crystallinity of $TiO_2$ of the specimen was tested by the XRD. Size, shape and chemical compositions were also analyzed using the FE-SEM/ EDS. The angle and methylene blue degradation efsciency were measured for evaluating the photocatalytic activity of the $TiO_2$ film. Finally, the antifungal activity of the specimen was tested. Candida albicans KCTC 7629(1 ml, initial concentration $10^5$ cells/ ml) were applied to the experiment and control group specimens and subsequently two UVA light source with 10W, 353 nm peak emission were illuminated to the specimens from 15cm above. The extracted $2{\mu}l$ of sample was plated on nutrient agar plate ($Bacto^{TM}$ Brain Heart Infusion; BD, USA) with 10 minute intervals for 120 minute, respectively. It was incubated for 24 hours at $37^{\circ}C$ and the colony forming units (CFUs) were then counted. Results. Compared the characteristics of LT photocatalyst with commercial P-25 photocatalyst, LT were shown higher activity than P-25. The LT coated experimental specimen surface had anatase crystal form, less than 20 nm of particle size and wide specific surface area. To evaluate the photocatalytic activity of specimens, methylene blue degradation reaction were used and about 5% of degradation rate were measured after 2 hours. The average contact angle was less than $20^{\circ}$ indicating that the LT photocatalyst had hydrophilicity. In the antifungal activity test for Candida albicans, 0% survival rate were measured within 30 minute after irradiation of UVA light. Conclusion. From the results reported above, it is concluded that the UVA-LT photocatalytic reaction have an antifungal effect on the denture surface Candida albicans, and so that could be applicable to the clinical use as a cleaning method.

A Comparative Study on the Use of Seawater and Sea Salt in Nutrient Elimination (영양염제거에서 해수 및 해수염에 관한 비교연구)

  • Cainglet, Annaliza Pabrua;Kim, Woo-Hang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.7
    • /
    • pp.829-835
    • /
    • 2016
  • An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium phosphate. The difference in the removal efficiency of seawater and sea salt solution as primary sources of $Mg^{2+}$ ions and $Ca^{2+}$ ions for the formation of magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) respectively, were observed, taking into account the changes in pH and concentration. The results showed that seawater removed about 90 % phosphate and less than 50 % ammonia in sewage water condition, whereas the sea salt solution removed almost 90 % phosphate and 70 % ammonia in solution at pH 9 and 10 mM concentration of sea salt which further increases as the optimum ${Mg/PO_4}^{3-}$, ${NH_4}^+$ ratio reaches 2. The difference in the removal efficiency of seawater and sea salt was due to the fact that the set-ups were prepared in different conditions. This study suggests that both seawater and sea salt can be used to remove nutrients from the water. The relatively higher removal of phosphate can be explained by the formation of HAP from free $Ca^{2+}$ ions initially present in seawater and sea salt solution.