폐쇄된 계의 닫힌 운동을 회전운동으로 실현하는 것 중 수평운동은 코리올리스힘[2], 가로힘에 의해서 나타날 수 있는 반면 모터의 위치에 수직으로 발생하는 닫힌 운동이 장동 힘에 의해 발생되는 장동운동이다. 장동운동은 수직 닫힌 운동이며 그 수식을 구하여 수식 모델로 하고 컴퓨터 씨뮬레이션 모델로 쓰기 위해 수식 모델로부터 시뮬레이션 데이터와 실제 장치의 데이터를 비교 검토한 후 첨가되는 변수 요소를 정하였다. 그 결과 중력장에서 마찰계수와 모터의 극수에 관계되는 부하에 대한 에너지 불균형 요소가 변수로 첨가된다. 이 시뮬레이션은 그래픽 게임을 실제와 같은 물리법칙으로 적용할 수 있다.
본 논문에서 위성의 롤/요 자세제어를 위해 더블 김벌을 이용하며 2 종류의 피드백 제어기를 설계하였다. 하나는 롤과 요 제어압력에 위상 차이가 없는 PD 제어기이고 다른 하나는 요 제어입력에 위상지연이 있는 PD 제어기이다. 위상지연 보상기는 요각 제어를 위한 1차 시스템으로 설계하였다. 일정한 외란과 초기 뉴테이션 오차가 있는 경우에 대해 시뮬레이션하여 요각의 정상상태 오차와 rising time 의 결과로부터 위상지연 보상기가 효과적임을 검증하였다. 본 시뮬레이션에 사용된 변수 값은 무궁화위성 1호를 대상으로 하였다.
Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.
무궁화 위성체는 10년 수명기간 동안 통신 및 직접방송 위성서비스에 필요한 빔의 지향성을 유지하기 위하여 정확하고 신뢰성있는 자세제어 시스팀을 요구하고 있다. 본고에서는 무궁화 위성체가 정지궤도에서 정상운용모드로 동작하는데 요구되는 자세제어부속시스팀에 대한 상세설계기법 및 성능에 대해서 기술하고자 한다.
Kim, Shinna;Oh, Se-Heon;For, Bi-Qing;Sheen, Yun-Kyeong
천문학회보
/
제46권2호
/
pp.71.1-71.1
/
2021
We perform disk-halo decomposition of the Large Magellanic Cloud (LMC) using a novel HI velocity field extraction method, aimed at better deriving its HI kinematics and thus mass distribution in the galaxy including both baryons and dark matter. We decompose all the line-of-sight velocity profiles of the combined HI data cube of the LMC, taken from the Australia Telescope Compact Array (ATCA) and Parkes radio telescopes with an optimal number of Gaussian components. For this, we use a novel tool, the so-called BAYGAUD which performs profile decomposition based on Bayesian MCMC techniques. From this, we disentangle turbulent non-ordered HI gas motions from the decomposed gas components, and produce an HI bulk velocity field which better follows the global circular rotation of the galaxy. From a 2D tilted-ring analysis of the HI bulk velocity field, we derive the rotation curve of the LMC after correcting for its transverse, nutation and precession motions. The dynamical contributions of baryons like stars and gaseous components which are derived using the Spitzer 3.6 micron image and the HI data are then subtracted from the total kinematics of the LMC. Here, we present the bulk HI rotation curve, the mass models of stars and gaseous components, and the resulting dark matter density profile of the LMC.
일반적으로 롤/요 평면상의 nutation 운동이 있는 피치 모멘텀 바이어스 시스템을 정지궤도 위성인 통신위성에서 주로 사용되어 왔으나 본 논문에서는 저궤도 위성의 경우에 대해 최소 휠 개수인 2개 반작용휠로 구성된 피치 모멘텀 바이어스 시스템을 휠 모멘텀 제어방식으로 피치축과 롤축 자세제어를 수행하는 방안을 살펴보았다. PI-제어기를 사용한 휠 모멘텀 제어 방식의 경우 휠 베어링 마찰 등 반작용휠에 가해지는 외란에 대한 강건성 보장을 해석적으로 분석하였으며, 롤축 자세에러 측정치와 요축 모멘텀 선형 제어기 설계를 위한 전달함수를 제시하였고, 시스템에 대한 이해도를 높이고, 외란 영향 및 모멘텀 바이어스 크기 등 필요한 설계 인자 선정을 위해 시스템에 대한 분석을 수행하였다.아울러 요축 모멘텀 PID-제어기를 사용한 모멘텀 바이어스 시스템의 롤/요축 자세제어 설계결과 및 시뮬코타키나발루레이션 결과를 제시하였다.
생명과학 분야에서 컴퓨터를 활용할 수 있는 대표적인 예로는 서열화, 서열화 분석, 비교, 진화, 돌연변이 추적, 약 설계를 위한 유사성 비교, 단백질 기능 예측, 그리고 세포 메커니즘과 질병 발생에서의 유전자 역할 예측 등 다양한 분야를 들 수 있다. 생명공학 연구자들에게는 이와 같은 작업을 위한 도구들이 요구되고 있다. 본 논문에서는 바이오 데이터 분석을 위한 기존 시스템의 문제점을 파악하고, 이를 개선할 수 있는 시스템 설계에 초점을 맞추었다. 또한 각각의 분석 작업을 개선할 수 있고 서로 독립적으로 진행되는 기존의 시스템을 통합할 수 있는 통합 분석 시스템을 설계하고자 한다.
상대론올 포함한 행성의 운동방정식을 중심으로 9개의 행성과 달, 그리고 4개의 소행성을 포함한 태양계의 n체 문제를 다루었다. 이 기본방정식에 지구와 달의 figure potential과 지구의 solid tidal effect를 외력으로 하는 섭동방정식을 추가하였다. 지구의 orientation을 J2000.0을 기준으로 하는 세차와 장동에 관한 식을 채택하였고, 달의 orientation에 대해 서는 J2000.0을 기준으로 하는 달의 칭동 모델을 션택하고 Eckert의 행성섭동효과를 추가 하였다. 각각의 subroutine별로 테스트를 거쳐 이들을 결합하여‘SSEG (Solar System Ephemerides Generator)’ 라는 소프트웨어 package를 개발한 후, CRAY-2S 슈퍼컴퓨터를 사용하여 프로그램을 수행하였다. 기준 시각인 JD2440400.5를 기준으로 하여, 1일 간격으로 40,000일 (약 110년) 동안 각 행성의 위치 (태양중심 황도직교좌표값)를 계산한 후, 이 결과의 정확도를 검증하기 위하여 JPL의 DE200 자료와 우리의 결과를 비교하였다. 이 연구로부터 얻은 결과로서 행성들의 위치 성분에 대한 최대오차가 100년 동안 $\pm2\times10^{-8}AU(약\pm3km)$ 이하로 나타났다
본 논문은 피치 바이어스 모멘텀 방식을 사용하는 HAUSAT-2 위성의 모멘텀 휠 초기구동(Start-up)을 위한 방안을 연구 분석하고 초소형위성 HAUSAT-2에 적합한 새로운 초기구동 방법을 제안하였다. HAUSAT-2는 25kg급의 나노 위성으로 모멘텀 휠과 마그네틱 토커를 사용하여 3축 제어를 수행한다. 자세제어를 위해 모멘텀 휠은 공칭 속도로 회전하거나 회전속도가 변하게 된다. 모멘텀 휠을 장착한 위성에서 휠의 초기구동방법은 휠을 발사 전에 미리 일정한 속도로 회전하게 하거나, 궤도상에서 추력기와 같은 구동기로 자세를 안정화 시킨 이후에 휠을 공칭속도에 도달하게 하는 방법이 있다. 하지만 HAUSAT-2와 같은 초소형위성의 경우 전력제한으로 발사 전 휠을 구동하기 힘들며, 궤도상에서 자세 안정화 이후 휠을 구동하기 위해서는 자기토커만으로 자세를 안정화 해야 하는데 이 경우 시간이 오래 걸리는 단점이 있다. 따라서 본 논문에서는 좀더 빠르고 효율적으로 휠의 초기구동과 자세안정화를 하기 위해서 모멘텀 휠 구동 방안을 제안하였다. 이 방법은 위성이 발사체에서 분리된 후 초기 각속도 제어를 할 때 일정한 속도 증가율로 모멘텀 휠의 속도를 올려주어 공칭 속도에 도달하게 하며, 이 후 자세 안정화를 수행하게 된다. 이 방식을 사용하면 약 4 궤도 이내에 휠 초기구동과 자세 안정화를 성공적으로 이룰 수 있음을 확인 할 수 있었다.
향후 우리나라의 화성 근접 탐사 임무를 대비한 우주선의 궤도전파 소프트웨어의 개발 및 검증을 실시하였다. 이를 위해 화성 주위를 비행하는 우주선의 동력학 모델에 대한 연구가 선행 되었으며, 탐사우주선의 모든 위치 정보는 화성 중심 좌표계를 사용하여 나타내었다. 정밀한 탐사 우주선의 위치 계산을 위하여 화성의 세차 및 장동 운동에 의한 영향도 고려하였다. 화성의 작용권구 안으로 진입한 탐사 우주선은 화성 주위에서의 다양한 섭동에 의한 영향을 받게 되는데 본 연구에서는 정밀한 동력한 모델의 계산을 위해 가능한 모든 섭동들을 고려하였다. 특히 화성의 비대칭 중력장에 의한 영향을 계산하기 위해 Jet Propulsion Laboratory(JPL)의 Mars50c 모델을 적용하였고 화성 대기 항력에 의한 영향의 경우 Mars-GRAM 2001 모델을 사용하여 계산하였다. 태양을 비롯한 다른 행성의 위치를 계산하기 위해서 JPL의 DE405 정밀 천체력을 이용하였고 화성 위성들(포보스와 다이모스)의 천체력 계산은 해석적인 방법으로 하였다. 개발 소프트웨어의 성능 검증을 위하여 Mars Global Surveyor의 화성 지도 작성을 위한 초기 궤도 요소를 사용하였으며, Satellite Tool Kit(STK)의 Astrogator모듈을 이용하여 산출된 결과와 본 논문에서 개발한 소프트웨어의 결과 값과 비교 하였다. 비교 결과 우주선의 모든 위치성분(반경방향, 궤도 진행방향 그리고 진행수직방향)은 화성 근접 탐사 우주선이 화성 주위를 12번 공전(약 1화성일)하는 동안 최대 ${\pm}5m$ 이내의 오차를 보여 주었다. 이는 본 연구를 통해서 개발된 소프트웨어의 성능에 대한 신뢰도가 매우 높다는 것을 의미한다. 따라서 개발된 알고리즘과 소프트웨어는 향후 우리나라의 화성 근접 탐사를 위한 우주선의 임무 설계시 활용 될 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.