• 제목/요약/키워드: numerical technique

검색결과 3,697건 처리시간 0.045초

Research on Turbulent Skin Friction Reduction with the aid of Direct Numerical Simulation

  • Fukagata, Koji
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년 추계학술대회논문집
    • /
    • pp.347-354
    • /
    • 2008
  • We introduce a series of studies on turbulent skin friction drag reduction in wall-turbulence. First, an identity equation relating the skin friction drag and the Reynolds shear stress (the FIK identity) is introduced. Based on the implication of the FIK identity, a new analytical suboptimal feedback control law requiring the streamwise wall-shear stress only is introduced and direct numerical simulation (DNS) results of turbulent pipe flow with that control is reported. We also introduce DNS of an anisotropic compliant surface and parameter optimization using an evolutionary optimization technique.

  • PDF

잠겨진 물체를 포함하는 계면유동의 수치적인 연구 (Numerical Study of Interfacial Flows With Immersed Solids)

  • 김성일;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.706-711
    • /
    • 2003
  • A numerical method is presented for computing unsteady incompressible two-phase flows with immersed solids. The method is based on a level set technique for capturing the phase interface, which is modified to satisfy a contact angle condition at the solid-fluid interface as well as to achieve mass conservation during the whole calculation procedure. The modified level set method is applied for numerical simulation of bubble deformation in a micro channel with a cylindrical solid block and liquid jet from a micro nozzle.

  • PDF

가스분사를 통한 Pot내에서의 입자 거동연구 (A study on particles flow through gas injection in pot)

  • 김성수;백제현;최민석
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2002년도 추계 학술대회논문집
    • /
    • pp.144-149
    • /
    • 2002
  • This paper presents the result of numerical simulation of particles trace following melted zinc movement with nitrogen gas injection. The code of the computational fluid dynamics for numerical analysis was performed using FLUENT related to CFD. As application model, there was applied Eulerian multiphase model for simulation of melted zinc movement at first and then was used stochastic tracking technique for particles trace secondarily. Numerical simulation results are shown that particles move to the same direction as the movement of melted zinc.

  • PDF

스월이 정적연소실의 난류연소에 미치는 영향에 관한 수치해석 (A numerical study on the effects of swirl on turbulent combustion in a constant volume bomb)

  • 정진은;김응서
    • 오토저널
    • /
    • 제13권1호
    • /
    • pp.66-74
    • /
    • 1991
  • A multidimensional numerical simulation of turbulent combustion in a constant volume bomb is implemented to clarify the effects of swirl on combustion. This simulation includes the ICED-ALE numerical technique, the skew-upwind differencing scheme, the modified .Kappa.-.epsilon. turbulence model, and the combustion model of the Arrhenius type and the turbulence-mixing-control type. The calculations of the turbulent combustion with swirl are carried out. It shows that the results agree with the measurements allowably. Therefore, the effects of swirl on turbulent combustion are examined through the parametric study of swirl.

  • PDF

Hybrid Diversity-Beamforming Technique for Outage Probability Minimization in Spatially Correlated Channels

  • Kwon, Ho-Joong;Lee, Byeong-Gi
    • Journal of Communications and Networks
    • /
    • 제9권3호
    • /
    • pp.274-281
    • /
    • 2007
  • In this paper, we present a hybrid multi-antenna technique that can minimize the outage probability by combining the diversity and beamforming techniques. The hybrid technique clusters the transmission antennas into multiple groups and exploit diversity among different groups and beamforming within each group. We analyze the performance of the resulting hybrid technique for an arbitrary correlation among the transmission antennas. Through the performance analysis, we derive a closed-form expression of the outage probability for the hybrid technique. This enables to optimize the antenna grouping for the given spatial correlation. We show through numerical results that the hybrid technique can balance the trade-offs between diversity and beamforming according to the spatial correlation and that the optimally designed hybrid technique yields a much lower outage probability than the diversity or beamforming technique does in partially correlated fading channels.

PML 무반사 기법을 이용한 부유식 해상풍력발전기의 수중폭발에 따른 동응답 수치해석 (Numerical Analysis of Dynamic Response of Floating Offshore Wind Turbine to the Underwater Explosion using the PML Non-reflecting Technique)

  • 조진래;전수홍;정의봉
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.521-527
    • /
    • 2016
  • 본 논문은 효과적인 무반사 기법을 이용한 수중폭발에 따른 부유식 해상풍력발전기의 동응답 수치해석에 관한 내용이다. 수치해석을 위해 무한한 바다 영역을 유한한 영역으로 한정하고 그 경계에서 필연적인 충격파의 반사를 흡수하기 위해 PML(perfectly matched layer)이라 불리는 무반사 기법을 적용하였다. 수중폭발을 수반한 비점성 압축성 유동을 표현하는 일반화된 수송방정식은 방향별 흡수계수와 상태변수를 도입하여 3개의 PML 방정식으로 분리하였다. 풍력발전기와 해수 유동으로 구성된 유체-구조 연계문제는 오일러 기반의 유한체적법과 라그랑지 기반의 유한요소법을 연계하여 반복계산으로 해석하였다. 그리고 수중폭발에 따른 동수압은 JWL 상태방정식으로 계산하였다. 수치실험을 통해 수중폭발에 따른 동수압과 구조 동응답을 분석하였으며, PML 무반사 기법을 적용한 경우가 그렇지 않은 경우에 비해 보다 정확한 해석결과를 제공함을 확인하였다.

직접 수치 모사를 통한 캐비테이션 소음 예측 및 모델링 (Cavitation Noise Prediction: Direct numerical simulation and Modeling)

  • 서정희;문영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2929-2934
    • /
    • 2007
  • Prediction methods for cavitation noise are presented. At first, direct numerical simulation of cavitating flow noise has been performed, and acoustic analogy equation based on the cavitation noise modeling is derived. For the direct numerical simulation, a density based homogenous equilibrium model is employed to simulate cavitating two-phase flow and the governing equations are solved with high-order numerical schemes to resolve cavitation noise. The compressible Navier-Stokes equations for mixture fluids are discretized with a sixth-order central compact scheme, and the steep gradient of flow variables and supersonic regions are treated with the selective spatial filtering technique. The direct simulation of cavitating flow noise is performed for a 2D circular cylinder at cavitation number 0.7 and 1. The far-field noise is also predicted with the derived analogy equation. Noise spectrum predicted with the equation is well compared with the result of direct numerical simulation and also agree well with the theory.

  • PDF

NUMERICAL SOLUTIONS OF AN IMPACT OF NATURAL CONVECTION ON MHD FLOW PAST A VERTICAL PLATE WITH SUCTION OR INJECTION

  • Ambethkar, V.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권4호
    • /
    • pp.201-202
    • /
    • 2008
  • Because of the importance of suction or injection in the fields of aerodynamics, space science and many other industrial applications, our present study is motivated. The effect of natural convection on MHD flow past a vertical plate with suction or injection is studied. We have tried to solve the dimensionless governing equations by using finite difference scheme. To ensure the validity of our numerical solutions, we have compared our numerical solutions for temperature and velocity for the case of suction and injection for unit Prandtl number with the available exact solutions in the literature. The corresponding codes were written in Mathematica 5.0 for calculating numerical solutions for temperature and velocity and the comparison between the exact and numerical solutions. For the purpose of discussing the results some numerical calculations are carried out for non-dimensional temperature T, velocity u, skin friction ${\tau}$ and the Nusselt number $N_u$, by making use of it, the rate of heat transfer is studied.

  • PDF

NUMERICAL SIMULATION OF THE FRACTIONAL-ORDER CONTROL SYSTEM

  • Cai, X.;Liu, F.
    • Journal of applied mathematics & informatics
    • /
    • 제23권1_2호
    • /
    • pp.229-241
    • /
    • 2007
  • Multi-term fractional differential equations have been used to simulate fractional-order control system. It has been demonstrated the necessity of the such controllers for the more efficient control of fractional-order dynamical system. In this paper, the multi-term fractional ordinary differential equations are transferred into equivalent a system of equations. The existence and uniqueness of the new system are proved. A fractional order difference approximation is constructed by a decoupled technique and fractional-order numerical techniques. The consistence, convergence and stability of the numerical approximation are proved. Finally, some numerical results are presented to demonstrate that the numerical approximation is a computationally efficient method. The new method can be applied to solve the fractional-order control system.

HIGHER ORDER GALERKIN FINITE ELEMENT METHOD FOR THE GENERALIZED DIFFUSION PDE WITH DELAY

  • LUBO, GEMEDA TOLESSA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • 제40권3_4호
    • /
    • pp.603-618
    • /
    • 2022
  • In this paper, a numerical solution of the generalized diffusion equation with a delay has been obtained by a numerical technique based on the Galerkin finite element method by applying the cubic B-spline basis functions. The time discretization process is carried out using the forward Euler method. The numerical scheme is required to preserve the delay-independent asymptotic stability with an additional restriction on time and spatial step sizes. Both the theoretical and computational rates of convergence of the numerical method have been examined and found to be in agreement. As it can be observed from the numerical results given in tables and graphs, the proposed method approximates the exact solution very well. The accuracy of the numerical scheme is confirmed by computing L2 and L error norms.