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HIGHER ORDER GALERKIN FINITE ELEMENT METHOD

FOR THE GENERALIZED DIFFUSION PDE WITH DELAY

GEMEDA TOLESSA LUBO∗ AND GEMECHIS FILE DURESSA

Abstract. In this paper, a numerical solution of the generalized diffusion
equation with a delay has been obtained by a numerical technique based

on the Galerkin finite element method by applying the cubic B-spline basis

functions. The time discretization process is carried out using the forward
Euler method. The numerical scheme is required to preserve the delay-

independent asymptotic stability with an additional restriction on time

and spatial step sizes. Both the theoretical and computational rates of
convergence of the numerical method have been examined and found to be

in agreement. As it can be observed from the numerical results given in

tables and graphs, the proposed method approximates the exact solution
very well. The accuracy of the numerical scheme is confirmed by computing

L2 and L∞ error norms.
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1. Introduction

In this work, we consider the generalized diffusion equation with delay
∂u(x,t)

∂t = r1
∂2u(x,t)

∂x2 + r2
∂2u(x,t−τ)

∂x2 , t > 0, 0 < x < L,
u(x, t) = φ (x, t), −τ ≤ t ≤ 0, 0 ≤ x ≤ L,
u(0, t) = u(L, t) = 0, t ≥ −τ,

(1)

where r1 > 0, r2 ≥ 0 and τ > 0 is a delay constant.
Generalized diffusion equations with delay have attracted significant interest in
the last several decades due to their frequent occurrence in real life problems[9,
10, 11, 12, 13]. As they describe diverse physical phenomena like heat transfer,
diffusion, mechanics of elastic and plastic materials, fluid mechanics, electro-
statics and -dynamics, and many more. The generalized diffusion equation with
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the delay has inherent complex nature because of which analytical solutions are
hardly obtainable. Therefore, one has to rely mostly on numerical treatments.
Jackiewicz and Zubik-Kowal [8] used spectral collocation and waveform relax-
ation methods to investigate nonlinear partial differential equations with delay.
Chen and Wang [5] used the variational iteration method to study a neutral
functional differential equation with delays. Partial differential equations(PDEs)
with delay were studied by many authors (see for instance [6, 7, 14, 19]). The
generalized diffusion equations with a delay are considered in [18, 16, 1, 22]. Up
to now, most of the numerical methods available to approximate the diffusion
term are based on finite difference methods. Finite difference methods are easy
to understand and implement. However, they suffer from a series of drawbacks,
such as inflexibility with respect to geometry, the difficulty of generalizing to
higher orders of approximation, and the inability to perform true adaptive local
refinement. The finite element method (FEM) is an efficient numerical method
for solving problems of engineering and mathematical modeling, most specifi-
cally PDEs. It is well known that the FEM can be easily designed for high order
of accuracy in space. To the best knowledge of the authors, the idea of the cubic
B-spline FEM has not been implemented for solving the generalized diffusion
equation with a delay so far. Nevertheless, the idea of B-spline FEM is applied
to solve Burgers’ equations without delay [2, 3, 17]. The proposed method has
the order of four in the spatial direction. It gives a better convergence result
than the standard second-order central finite-difference. Our best concern is to
formulate a numerical scheme of a higher order of accuracy by using cubic B-
spline shape functions.
Notations: Denote ∥.∥ and ∥.∥r as the norm L2 = L2(Ω) and the sobolev
space Hr = Hr(Ω) = W r

2 (Ω) respectively, so the real valued-function v,

∥v∥r = ∥v∥L2
:=

(∫
Ω

v(x)2dx

) 1
2

,

and for a positive integer r,

∥v∥r = ∥v∥Hr :=

(∑
i≤r

∥∥∥∥∂iv(x)

∂xi

∥∥∥∥2
) 1

2

.

Let v(x), w(x)(x ∈ Ω) be real valued functions.

(v, w) :=

∫
Ω

v(x)w(x)dx, (∇v,∇w) :=

∫
Ω

∂v(x)

∂x

∂w(x)

∂x
dx,

and C denote a positive not necessarily the same at different occurrences ,which
may depend on r1, r2 and t of (1), but independent of h and ∆t (the step sizes
in t - direction). We denote u(x, t) by u or u(t).
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2. Description of the Method

Let ∆t = τ/(m + 1) be a given step size with m ≥ 1, the grid points tn =
n∆t(n = 0, 1, . . . ) and be the approximation of u(t) at t = tn = n∆t. For

positive integer N, let {xk}N+1
k=0 be a uniform partition on Ω = [0, π] in the x

direction, such that xk = kh, where h = π/(N + 1) is the step size.
Define the space

S3 = {ζ : ζ ∈ C2([0, π]), ζ|[xk−1,xk] ∈ P3, 1 ≤ k ≤ N + 1},

where P3 is the space of all polynomials of degree ≤ 3. Extending the partition
{xk}N+1

k=0 using xk =kh, k = −3,−2,−1, N + 2, N + 3, N + 4. As a basis for S3,

we choose the B -splines, {Qj}N+2
j=−1(x), where

Qj(x) =


h−3f1(x− xj−2), x ∈ [xj−2, xj−1],

f2(
x−xj−1

h ), x ∈ [xj−1, xj ],

f2(
xj+1−x

h ), x ∈ [xj , xj+1],
h−3f1(xj+2 − x), x ∈ [xj+1, xj+2],
0, x /∈ [xj−2, xj+2],

(2)

and f1(x) = x3, f2(x) = 1 + 3x+ 3x2 − 3x3. Denote a basis for the space

ST
h = {ζ ∈ S3; ζ(0) = ζ(π) = 0}. (3)

The cubic B -spline base for ST
h can be redefined as follows:

Q0 = Q0(x)− 4Q−1(x), Q1(x) = Q1(x)−Q−1(x),
Qj(x) = Qj(x), j = 2, 3, . . . , N − 1,

QN (x) = QN (x)−QN+2(x), QN+1(x) = QN+1(x)− 4QN+2(x).

(4)

As the cubic B -splines Qj(x), the cubic B-splines Qj(x) have the support of at
least 4 subintervals.
The weak formulation of (1) for U ∈ ST

h is(
∂U(x, t)

∂t
, ζ

)
+ r1(∇U(x, t),∇ζ) + r2(∇U(x, t− τ),∇ζ) = 0, (5)

with

a(U, ζ) =

(
∂U(x, t)

∂t
, ζ

)
+r1(∇U(x, t),∇ζ)+r2(∇U(x, t− τ),∇ζ) and l(ζ) = 0,

a(U, ζ) = l(ζ),∀ζ ∈ ST
h ,

where a(U, ζ) is symmetric bilinear and l(ζ) is linear functional.
Application of forward Euler Galerkin method leads to a numerical scheme of
the following type(

Un − Un−1

∆t
, ζ

)
+r1(∇Un−1,∇ζ)+r2(∇Un−m−1,∇ζ) = 0, for ∀ζ ∈ ST

h , (6)
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where Un(.) = φ(., tn) for −m ≤ n ≤ 0.
Let

Un(x) :=

N+1∑
j=0

Qj(x)α
n
j . (7)

Substituting (7) into (6) and choosing ζ = Qi(x), i = 0, . . . , N + 1, we obtain

1

∆t

N+1∑
j=0

(αn
j − αn−1

j )(Qi(x), Qj(x)) = −r1

N+1∑
j=0

αn−1
j (∇Qi(x),∇Qj(x))

−r2

N+1∑
j=0

αn−m−1
j (∇Qi(x),∇Qj(x)), (8)

which can be rewritten

1

∆t

N+1∑
j=0

(αn
j − αn−1

j )

∫ π

0

Qi(x)Qj(x)dx = −r1

N+1∑
j=0

αn−1
j

∫ π

0

Q
′
i(x)Q

′
j(x)dx

−r2

N+1∑
j=0

αn−m−1
j

∫ π

0

Q
′
i(x)Q

′
j(x)dx. (9)

Defining the following matrices:

E = (ei,j)
N+1
i,j=0 =

∫ π

0

Q
′
i(x)Q

′
j(x)dx, (10)

D = (di,j)
N+1
i,j=0 =

∫ π

0

Qi(x)Qj(x)dx. (11)

The entries of the matrices E and D is found from (10) and (11) respectively.

E =
3

10h



80 43 −20 −1 0 . . . . . . . . . 0

43 104 −14 −24 −1
. . .

...

−20 −14 80 −15 −24 −1
. . .

...

−1 −24 −15 80 −15 −24 −1
. . .

...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

...
. . . −1 −24 −15 80 −15 −24 −1

...
. . . −1 −24 −15 80 −14 −20

...
. . . −1 −24 −14 104 43

0 . . . . . . . . . 0 −1 −20 43 80



(12)
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and the mass matrix

D =
h

140



496 773 116 1 0 . . . . . . . . . 0

773 2296 1190 120 1
. . .

...

116 1190 2416 1191 120 1
. . .

...

1 120 1191 2416 1191 120 1
. . .

...

0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

...
. . . 1 120 1191 2416 1191 120 1

...
. . . 1 120 1191 2416 1190 116

...
. . . 1 120 1190 2296 773

0 . . . . . . . . . 0 1 116 773 496



(13)

In matrix notation, the numerical scheme (6) can be expressed as{
Dαn = (D − r1∆tE)αn−1 − r2∆tEαn−m−1, for n > 0,
αn = γn, for −m ≤ n ≤ 0,

(14)

with γn being the corresponding vector of the components of the given initial ap-
proximation of φ(tn), α

n := (α0, . . . , αN+1)
T , and hence obviously has a unique

solution for positive integer n. The algebraic system (14) is solved by using
matrix inverse method.

3. Stability Analysis

Definition 3.1. If the solution Un corresponding to any sufficiently differen-
tiable function φh(0, t) = φh(π, t) satisfies

lim
n→∞

Un = 0, x ∈ [0, π], (15)

then the zero of solution (6) is asymptotically stable.

Lemma 3.1. [19]Let γm(z) = α(z)zm − β(z) be a polynomial, where α(z)and
β(z) are polynomials of constant degree. Then, the polynomial γm(z) is a Schur
polynomial for m ≥ 1 if and only if the following condition hold:

(i) α(z) = 0 ⇒ |z| < 1,
(ii) |β(z)| ≤ |α(z)| ,∀z ∈ C, |z| = 1, and
(iii) γm(z) ̸= 0,∀z ∈ C, |z| = 1.

Let K := [xi, xi−1] be an element of the finite element, and K̃ := [−1, 1] be
the reference element in η -plane. Then,∫

K

QiQjdx =
h

2

∫
K̃

Q̃iQ̃jdη,

∫
K

∇Qi∇Qjdx =
2

h

∫
K̃

∇Q̃i∇Q̃jdη,
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By (8),

αn =
2

h
D̄−1

(
h

2
D̃ − 2r1∆t

h
Ẽ

)
αn−1 − 4r2∆t

h2
D−1Ẽαn−m−1

αn =

(
I − 4r1∆t

h2
D̃−1Ẽ

)
αn−1 − 4r2∆t

h2
D̃−1Ẽαn−m−1. (16)

Let αn = λnC1, where C1 is a constant vector and λn is an eigenvalue. Then
the characteristic of (16) is

λm −

(
1− 4r1∆t

h2
λD̃−1Ẽ

)
λm−1 +

4r2∆t

h2
λD̃−1Ẽ = 0. (17)

Theorem 3.2. Suppose that 0 ≤ r2 < r1. Then the solution of proposed
numerical scheme is delay independently asymptotically stable if and only if
∆t
h2 ≤ 1

4r1λD̃−1Ẽ
.

Proof. Denote α(λ) = λ− (1− 4r1∆t
h2 λD̃−1Ẽ) and β(λ) = − 4r2∆t

h2 λD̃−1Ẽ .

(a) If α(λ) = 0, then |λ| =
∣∣(1− 4r1∆t

h2 λD̃−1Ẽ)
∣∣ < 1 if and only if ∆t

h2 ≤ 1
2r1λD̃−1Ẽ

.

(b) For ∀λ ∈ C, |λ| = 1, we can assume λ = cos θ + i sin θ, then ∆t
h2 ≤ 1

4r1λD̃−1Ẽ
.

|α(λ)|2 =

∣∣∣∣∣λ− 1 +
4r1∆t

h2
λD̃−1Ẽ

)∣∣∣∣∣
2

= 2(1− cos θ)

(
1− 4r1∆t

h2
λD̃−1Ẽ

)
+

(
4r1∆t

h2
λD̃−1Ẽ

)2

≥

(
4r1∆t

h2
λD̃−1Ẽ

)2

>

(
4r2∆t

h2
λD̃−1Ẽ

)2

= |β(λ)|2 .

Else, if ∆t
h2 > 1

r1λD̃−1Ẽ
, then |α(λ)|2 <

(
4∆t
h2 λD̃−1Ẽ

)2

(r1)
2. Choose r22 =

r21+
|α(λ)|2

(
4r1∆t

h2 λ
D̃−1Ẽ

)2

2 , so |α(λ)|2

(
4r2∆t

h2 λD̃−1Ẽ)
< r2 < r1 and |α(λ)| < r2

4r2∆t
h2 λD̃−1Ẽ =

|β(λ)| . Therefore, ∆t
h2 ≤ 1

4r1λD̃−1Ẽ
is a sufficient and necessary condition.

(c) By (b), it is straightforward. The proof is completed. □

4. Convergence Analysis

Introduce the elliptic or Ritz projection Rh on to ST
h as the orthogonal pro-

jection with respect to (∇v,∇w), such, so that

(∇Rhv,∇ζ) = (∇v,∇ζ),∀ζ ∈ ST
h , for v ∈ H1

0 (Ω). (18)
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Lemma 4.1. [15] Assume that for any v ∈ Hs(Ω) ∩H1
0 (Ω),

inf
ζ∈Sh

{∥v − ζ∥+ ∥∇(v − ζ)∥} ≤ Chs,

for 1 ≤ s ≤ r holds. Then, with Rh defined by (18) we have ∥Rhv − ζ∥ +
h ∥∇(Rhv − v)∥ ≤ Chs ∥v∥s, for any v ∈ Hs(Ω) ∩H1

0 (Ω) , 1 ≤ s ≤ r.

Let u(t) := u(., t) and u : [0,+∞) → H1
0 (Ω). Define Dh : H1

0 (Ω) → ST
h by

r1(∇Dhu(t)−∇u(t),∇ζ) + r2(∇Dhu(t− τ)

−∇u(t− τ),∇ζ) = 0, for t > 0 ζ ∈ ST
h (19)

Dhu(t) = Rhu(t) = Rhφ(t), for − τ ≤ t ≤ 0. (20)

The number r is referred to as the order of accuracy of the family ST
h . For the

piecewise linear functions in a plane domain r = 2. In the case r > 2, ST
h often

consists of piecewise polynomials of degree at most r − 1 . For instance, r = 4
in the case of piecewise cubic polynomial subspaces ([20], see p. 4). Let uh and
u be the solutions of (1). Then error can be quantified by bounding the norm of
the error uh(t)− u(t) in terms of the mesh spacing h of the finite element mesh.
This can be generalized in the following remarks.

Remark 4.1. Using polynomial with degrees p ≥ 1 as basis we expect an error
bound of

∥uh(t)− u(t)∥ ≤ Chp+1,

where C is a problem-dependent constant independent of h and the constant
p + 1 indicates the order of convergence of the FEM, as the mesh spacing h
decreases.

Theorem 4.2. Let u and Un be the exact and approximation solution of (1)
respectively.Assume that ∥u(t)−Rhu(t)∥i ≤ Ch4 ∥u(t)∥, ∥ut(t)−Rhut(t)∥ ≤
Ch4 ∥ut(t)∥, −τ ≤ t ≤ 0 and ∥φh(t)− φ(t)∥ ≤ Ch4, then

∥Un − u(tn)∥ ≤ C(h4 +∆t), for any n = 1, 2, ...

Proof. Denote

Un − u(tn) = (Un −Dhu(tn)) + (Dhu(tn)− u(tn)) = µn + ρn,

and ρn(t) = ρ(tn) is bounded as in [15],(
µn − µn−1

∆t
, ζ

)
+ r1(∇µn−1,∇ζ) + r2(µ

n−m−1, ζ) = −(Wn, ζ),∀ζ ∈ ST
h ,

where

Wn =
Dhu(tn)−Dhu(tn−1)

∆t
− ut(tn) = (Dh − I)∂̃u(tn) + (∂̃u(tn)− ut(tn))

=: Wn
1 +Wn

2 , ∂̃u(tn) :=
ut(tn) + ut(tn−1)

∆t
.
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Setting ζ = µn−1,gives(
µn − µn−1

∆t
, µn−1

)
+ r1

∥∥µn−1
∥∥2
1
+ r2(µ

n−m−1, µn−1) = −(Wn, µn−1).

By applying Schwartz inequality,(
µn − µn−1

∆t
, µn−1

)
+
∥∥µn−1

∥∥2
1
≤ C(

∥∥µn−m−1
∥∥2
1
+ ∥Wn∥

∥∥µn−1
∥∥).

So

∥µn∥2 +∆t
∥∥µn−1

∥∥2
1
≤ C(

∥∥µn−1
∥∥2 +∆t

∥∥µn−m−1
∥∥2
1
+ (∆t)2 ∥Wn∥2).

Without loss of generality, we can assume n ∈ ((k − 1)m, km], k ∈ N . Then

∆t
∥∥µn−1

∥∥2
1
≤ C(

∥∥µn−1
∥∥2 +∆t

∥∥µn−m−1
∥∥2
1
+ (∆t)2 ∥Wn∥2)

≤ C(
∥∥µn−1

∥∥2 + ∥∥µn−m−1
∥∥2 +∆t

∥∥µn−2m
∥∥2
1
+ (∆t)2(∥Wn∥2 +

∥∥Wn−m−1
∥∥2))

≤ · · · ≤ C

(
k−1∑
i=0

∥∥µn−im−1
∥∥2 +∆t

∥∥µn−km−1
∥∥2
1
+ (∆t)2

k−1∑
i=0

∥∥Wn−im−1
∥∥2).

Therefore

∥µn∥2 ≤ C

(
k−1∑
i=0

∥∥µn−im−1
∥∥2 +∆t

∥∥µn−km−1
∥∥2
1
+ (∆t)2

k−1∑
i=0

∥∥Wn−im−1
∥∥2)

By the assumption of the theorem and using the discrete Gronwall inequality(see[4]),

∥µn∥2 ≤ C

(∥∥µ0
∥∥2 +∆t

∥∥µn−km−1
∥∥2
1
+ (∆t)2

k−1∑
i=0

∥∥Wn−im−1
∥∥2). (21)

We write

Wn
1 = (Dh − I)∂̃u(tn) = (∆t)−1

∫ tn

tn−1

d/dt(Dh − I)u(t)dt,

So

(∆t)2
k−1∑
i=0

∥∥Wn−im−1
∥∥2 =

k−1∑
i=0

(∫ tn−im

tn−im−1

d/dt(Dh − I)u(t)dt

)2

≤
k−1∑
i=0

(∫ tn−im

tn−im−1

Ch4 ∥ut(t)∥ dt

)2

≤ Ch2(4). (22)

Moreover∥∥∆tW i
2

∥∥ = u(ti)− u(ti−1)−∆tut(ti) = −
∫ ti

ti−1

(ti − ti−1)utt(t)dt,
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So that

(∆t)2
k−1∑
i=0

∥∥Wn−im−1
2

∥∥2 =

k−1∑
i=0

∥∥∥∥∥
∫ tn−im

tn−im−1

(t− tn−im−1)utt(t)dt

∥∥∥∥∥
2

≤ (∆t)2
k−1∑
i=0

∥∥∥∥∥
∫ tn−im

tn−im−1

utt(t)dt

∥∥∥∥∥
2

≤ C(∆t)2, (23)

from(22) and (23)
∥Un − u(tn)∥ ≤ C(h4 +∆t).

This complete the proof. □

5. Numerical Experiments

We carry out numerical experiments to illustrate our theoretical results. The
L∞ and L2 error norms are computed by:

L∞ = max
0≤n≤N+1

|tn)− (Un)| , L2 =

√√√√h

N+1∑
i=0

|u(tn)− (Un)|2

Order of convergence is denoted by

Order(r) =
log(Error(N)/Error(2N))

log(2− 1
N+1 )

5.1. Stability Test.

Example 5.1. We conduct numerical experiments to illustrate our numerical
stability analysis of the method when applied to

∂u(x,t)
∂t = r1

∂2u(x,t)
∂x2 + r2

∂2u(x,t−τ)
∂x2 , t > 0, 0 < x < π,

u(x, t) = φ (x, t), −τ ≤ t ≤ 0, 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, t ≥ −τ.

(24)

First, we take the initial function as φ(x, t) = sin(x), τ = 1, r1 = 1.5, r2 = 1
such that the trivial solution of (1) is asymptotically stable.’
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(a) (b)

Figure 1. Solution of (24) with parameter values a) N =
10,m = 40 b) N = 10,m = 50
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Figure 2. Solution of (24) with parameter values a) N =
10,m = 100 b) N = 10,m = 200

Numerical results are obtained and plotted at time T = 5 using different(∆t =
τ/(m + 1), h = π/(N + 1)). From figures 1(A) and 1(B), it is easily seen that
the numerical solution is unstable for the step sizes ∆t = 1

40 and ∆t = 1
50 . The

numerical solution is asymptotically stable for ∆t = 1
100 and ∆t = 1

500 in figures
2(A) and 2(B), respectively. These agree with the theoretical results described
in Theorem 3.2.

.
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5.2. Convergence Test.

Example 5.2. [21] We use the following equation to show the convergence
results:

∂u(x,t)
∂t = r1

∂2u(x,t)
∂x2 + r2

∂2u(x,t−τ)
∂x2 + h(x, t), t > 0, 0 < x < π,

u(x, t) = φ (x, t), −τ ≤ t ≤ 0, 0 ≤ x ≤ π,
u(0, t) = u(π, t) = 0, t ≥ −τ,

(25)

where the initial function and the exact are respectively φ(x, t) = sin(x) and
u(x, t) = exp(−t) sin(x). The added h(x, t) can be specified by substituting the
exact solution in (25).
Here, we take the parameters r1 = 1, r2 = 0.5, τ = 0.5, and compute the problem
on [0, π]× [0, 2] for different space and temporal step sizes(∆x = π/(N+1),∆t =
τ/(m+ 1)).

Table 1. Errors and convergence orders (∆t ≈ ∆x4)

Central difference method(θ = 1/2)[21] Present method
N L2 Order L∞ Order L2 Order L∞ Order

10 1.80E-03 - 1.44E-03 - 1.12E-03 - 8.86E-04 -
20 3.22E-04 2.48 2.57E-04 2.48 7.02E-05 4.29 5.58E-05 4.27
40 8.59E-05 1.90 6.86E-05 1.90 4.39E-06 4.14 3.50E-06 4.14
80 2.14E-05 2.00 1.71E-05 2.00 2.74E-07 4.07 2.19E-07 4.07

Table 2. Errors and convergence orders (∆t ≈ 0.5∆x4)

Central difference method(θ = 1)[21] Present method
N L2 Order L∞ Order L2 Order L∞ Order

10 1.34E-02 - 1.07E-02 - 2.23E-03 - 1.76E-03 -
20 3.25E-03 2.04 2.59E-03 2.04 1.40E-04 4.28 1.12E-04 4.26
40 8.10E-04 2.00 6.46E-04 2.00 8.77E-06 4.14 6.99E-06 4.14
80 2.02E-04 2.00 1.61E-04 2.00 5.48E-07 4.07 4.37E-07 4.07

Numerical errors and the corresponding orders are listed in Table 1 and 2. As
it can be seen from the tables, there is a noticeable decrease in both error
norms when mesh sizes decrease. These results confirm the convergence of the
proposed numerical scheme. The calculated error norms are compared with the
results obtained in [21]. Additionally, they also imply that the numerical method
gives a better order of convergence than the standard second-order central finite-
difference. In Figure 3, the graph of approximation solutions for example 5.2
at different times is given. In Figures 4 - 6, the exact and numerical solutions
of the problem are drawn on the same coordinate axis. In figures 7 and 8, we
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present the graph of analytical solution and numerical solution. By comparing
the two solutions, we can see that the solution obtained by the present method
is similar to the one obtained by the analytical method.
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Figure 3. The numerical solutions of example 5.2 at different
times (N = 10 and m = 100)
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Figure 4. Comparisons between approximate and exact solu-
tions of example 5.2 (N = 10 and m = 100)
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Figure 5. Exact and numerical solutions for example 5.2
(a) T = 2, T = 3, T = 4, N = 10,m = 100, and τ = 1.
(b) T = 1, T = 2, T = 3,N = 10,m = 100, and τ = 1.
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Figure 6. Exact and numerical solutions for example 5.2
(a) T = 0.25, T = 0.5, T = 0.75,N = 10,m = 100, and τ = 0.5.
(b) T = 0.5, T = 0.75, T = 0.5,N = 10,m = 100, and τ = 0.5.
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Figure 7. Approximation solution and analytical solution for
example 5.2 (N = 10 and m = 5)

0
0.5

1
1.5

2

0

1

2

3
0

0.2

0.4

0.6

0.8

t axis

Approximation solution

x axis

U

(a)

0
0.5

1
1.5

2

0

1

2

3
0

0.2

0.4

0.6

0.8

t axis

Exact Solution

x axis

u

(b)

Figure 8. Approximation solution and analytical solution for
example 5.2 (N = 10 and m = 100)

6. Conclusion

In this paper, a numerical solution of the generalized diffusion equation with
delay is obtained using the Galerkin finite element method based on cubic B
-spline shape functions. The performance of the method was examined on two
test problems, and its accuracy was shown by computing L2 and L∞ error
norms. The numerical results obtained demonstrate that the proposed scheme is
a remarkably successful numerical technique for solving the generalized diffusion
equation with delay. Accuracy in spatial direction is improved by using the cubic
B-spline basis functions.
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