• 제목/요약/키워드: numerical solution

검색결과 4,022건 처리시간 0.029초

스트립캐스팅한 구상흑연주철 박판의 흑연화 과정에 대한 phase-field 모델링 (I);고용도가 없는 상의 모델링 (Phase Field Modeling of Graphitization in Ductile Cast Iron by Strip Casting(I);Modeling of Phases with Negligible Solubility)

  • 김성균;나형용
    • 한국주조공학회지
    • /
    • 제20권2호
    • /
    • pp.129-140
    • /
    • 2000
  • This study aims at the phase-field modeling of the phase transformation in graphitization of the cast iron. As the first step, we constructed a phase-field model including the phases with negligible solubility. Under the dilute regular solution approximation, a simplified version of the phase-field model was obtained, which can be used for the phase transformation related with the stoichiometric phases. The results from the numerical calculation of the phase-field model was in good agreement with the exact analytic solution. The compositional shift due to Gibbs-Thomson effect can be reproduced within 0.5% error in the numerical calculation. The interface velocity, whereas, in numerical calculation of phase-field model appeared to be 15% larger than that from the analytic solution. This error is due to the shift of the interface position in phase-field model from the position with ${\phi}=0.5$.

  • PDF

초지의 지표면 흐름을 추적하기위한 Kinematic Wave Model의 개발(I) -이론 Model의 개발- (Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (I) -Theory and Numerical Solution-)

  • 최중대;;최예환;유능환
    • 한국농공학회지
    • /
    • 제35권2호
    • /
    • pp.57-64
    • /
    • 1993
  • A modified kinematic wave model of the overland flow in vegetated filter strips was developed. The model can predict both flow depth and hydraulic radius of the flow. Existing models can predict only mean flow depth. By using the hydraulic radius, erosion, deposition and flow's transport capacity can be more rationally computed. Spacing hydraulic radius was used to compute flow's hydraulic radius. Numerical solution of the model was accomplished by using both a second-order nonlinear scheme and a linear solution scheme. The nonlinear portion of the model ensures convergence and the linear portion of the model provides rapid computations. This second-order nonlinear scheme minimizes numerical computation errors that may be caused by linearization of a nonlinear model. This model can also be applied to golf courses, parks, no-till fields to route runoff and production and attenuation of many nonpoint source pollutants.

  • PDF

복잡한 3차원 곡면을 가지는 플라스틱 사출 성형품을 위한 진원도의 수학적 모델링 (Mathematical Modeling of the Roundness for Plastic Injection Mold Parts with Complicated 3D curvatures)

  • 윤선진
    • Design & Manufacturing
    • /
    • 제13권2호
    • /
    • pp.6-11
    • /
    • 2019
  • In this study, we constructed the mathematical model to evaluate the roundness for plastic injection mold parts with complicated 3D curvatures. Mathematically we started off from the equation of circle and successfully derived an analytical solution so as to minimize the area of the residuals. On the other hand, we employed the numerical method the similar optimization process for the comparison. To verify the mathematical models, we manufactured and used a ball valve type plastic parts to apply the derived model. The plastic parts was fabricated under the process conditions of 220-ton injection mold machine with a raw material of polyester. we experimentally measured (x, y) position using 3D contact automated system and applied two mathematical methods to evaluated the accuracy of the mathematical models. We found that the analytical solution gives better accuracy of 0.4036 compared to 0.4872 of the numerical solution. The numerical method however may give adaptiveness and versatility for optional simulations such as a fixed center.

A Regularization-direct Method to Numerically Solve First Kind Fredholm Integral Equation

  • Masouri, Zahra;Hatamzadeh, Saeed
    • Kyungpook Mathematical Journal
    • /
    • 제60권4호
    • /
    • pp.869-881
    • /
    • 2020
  • Most first kind integral equations are ill-posed, and obtaining their numerical solution often requires solving a linear system of algebraic equations of large condition number, which may be difficult or impossible. This article proposes a regularization-direct method to numerically solve first kind Fredholm integral equations. The vector forms of block-pulse functions and related properties are applied to formulate the direct method and reduce the integral equation to a linear system of algebraic equations. We include a regularization scheme to overcome the ill-posedness of integral equation and obtain a stable numerical solution. Some test problems are solved using the proposed regularization-direct method to illustrate its efficiency for solving first kind Fredholm integral equations.

Big data analysis via computer and semi numerical simulations for dynamic responses of complex nanosystems

  • Allam, Maalla;Xiaoping, Huang;Hongkai, Zhou
    • Advances in nano research
    • /
    • 제13권6호
    • /
    • pp.599-617
    • /
    • 2022
  • In the present research, for the first time, the vibrational as well as buckling characteristics of a three-layered curved nanobeam including a core made of functionally graded (FG) material and two layers of smart material-piezo-magneto-electric-resting on a Winkler Pasternak elastic foundation are examined. The displacement field for the nanobeam is chosen via Timoshenko beam theory. Also, the size dependency is taken into account by using nonlocal strain gradient theory, aka NSGT. Then, by employing Hamilton's principle, energy procedure, the governing equations together with the boundary conditions are achieved. The solution procedure is a numerical solution called generalized differential quadrature method, or GDQM. The accuracy and reliability of the formulation alongside solution method is examined by using other published articles. Lastly, the parameter which can alter and affect the buckling or vocational behavior of the curved nanobeam is investigated in details.

Transfer matrix method for solution of FGMs thick-walled cylinder with arbitrary inhomogeneous elastic response

  • Chen, Y.Z.
    • Smart Structures and Systems
    • /
    • 제21권4호
    • /
    • pp.469-477
    • /
    • 2018
  • This paper presents a numerical solution for the thick cylinders made of functionally graded materials (FGMs) with a constant Poisson's ratio and an arbitrary Young's modulus. We define two fundamental solutions which are derived from an ordinary differential equation under two particular initial boundary conditions. In addition, for the single layer case, we can define the transfer matrix N. The matrix gives a relation between the values of stress and displacement at the interior and exterior points. By using the assumed boundary condition and the transfer matrix, we can obtain the final solution. The transfer matrix method also provides an effective way for the solution of multiply layered cylinder. Finally, a lot of numerical examples are present.

Minimum-Energy Spacecraft Intercept on Non-coplanar Elliptical Orbits Using Genetic Algorithms

  • Oghim, Snyoll;Lee, Chang-Yull;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.729-739
    • /
    • 2017
  • The objective of this study was to optimize minimum-energy impulsive spacecraft intercept using genetic algorithms. A mathematical model was established on two-body system based on f and g solution and universal variable to address spacecraft intercept problem for non-coplanar elliptical orbits. This nonlinear problem includes many local optima due to discontinuity and strong nonlinearity. In addition, since it does not provide a closed-form solution, it must be solved using a numerical method. Therefore, the initial guess is that a very sensitive factor is needed to obtain globally optimal values. Genetic algorithms are effective for solving these kinds of optimization problems due to inherent properties of random search algorithms. The main goal of this paper was to find minimum energy solution for orbit transfer problem. The numerical solution using initial values evaluated by the genetic algorithm matched with results of Hohmann transfer. Such optimal solution for unrestricted arbitrary elliptic orbits using universal variables provides flexibility to solve orbit transfer problems.

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method

  • Ullah, Salamat;Zhang, Jinghui;Zhong, Yang
    • Structural Engineering and Mechanics
    • /
    • 제72권4호
    • /
    • pp.491-502
    • /
    • 2019
  • This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.

A novel analytical solution of the deformed Doppler broadening function using the Kaniadakis distribution and the comparison of computational efficiencies with the numerical solution

  • Abreu, Willian V. de;Martinez, Aquilino S.;Carmo, Eduardo D. do;Goncalves, Alessandro C.
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1471-1481
    • /
    • 2022
  • This paper aims to present a new method for obtaining an analytical solution for the Kaniadakis Doppler broadening (KDB) function. Also, in this work, we report the computational efficiencies of this solution compared with the numerical one. The solution of the differential equation achieved in this paper is free of approximations and is, consequently, a more robust methodology for obtaining an analytical representation of ψk. Moreover, the results show an improvement in efficiency using the analytical approximation, indicating that it may be helpful in different applications that require the calculation of the deformed Doppler broadening function.

CONSEQUENCE OF BACKWARD EULER AND CRANK-NICOLSOM TECHNIQUES IN THE FINITE ELEMENT MODEL FOR THE NUMERICAL SOLUTION OF VARIABLY SATURATED FLOW PROBLEMS

  • ISLAM, M.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제19권2호
    • /
    • pp.197-215
    • /
    • 2015
  • Modeling water flow in variably saturated, porous media is important in many branches of science and engineering. Highly nonlinear relationships between water content and hydraulic conductivity and soil-water pressure result in very steep wetting fronts causing numerical problems. These include poor efficiency when modeling water infiltration into very dry porous media, and numerical oscillation near a steep wetting front. A one-dimensional finite element formulation is developed for the numerical simulation of variably saturated flow systems. First order backward Euler implicit and second order Crank-Nicolson time discretization schemes are adopted as a solution strategy in this formulation based on Picard and Newton iterative techniques. Five examples are used to investigate the numerical performance of two approaches and the different factors are highlighted that can affect their convergence and efficiency. The first test case deals with sharp moisture front that infiltrates into the soil column. It shows the capability of providing a mass-conservative behavior. Saturated conditions are not developed in the second test case. Involving of dry initial condition and steep wetting front are the main numerical complexity of the third test example. Fourth test case is a rapid infiltration of water from the surface, followed by a period of redistribution of the water due to the dynamic boundary condition. The last one-dimensional test case involves flow into a layered soil with variable initial conditions. The numerical results indicate that the Crank-Nicolson scheme is inefficient compared to fully implicit backward Euler scheme for the layered soil problem but offers same accuracy for the other homogeneous soil cases.