Browse > Article
http://dx.doi.org/10.12989/sem.2019.72.4.491

Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method  

Ullah, Salamat (Faculty of Infrastructure Engineering, Dalian University of Technology)
Zhang, Jinghui (Faculty of Infrastructure Engineering, Dalian University of Technology)
Zhong, Yang (Faculty of Infrastructure Engineering, Dalian University of Technology)
Publication Information
Structural Engineering and Mechanics / v.72, no.4, 2019 , pp. 491-502 More about this Journal
Abstract
This paper explores the analytical buckling solution of rectangular thin plates by the finite integral transform method. Although several analytical and numerical developments have been made, a benchmark analytical solution is still very few due to the mathematical complexity of solving high order partial differential equations. In solution procedure, the governing high order partial differential equation with specified boundary conditions is converted into a system of linear algebraic equations and the analytical solution is obtained classically. The primary advantage of the present method is its simplicity and generality and does not need to pre-determine the deflection function which makes the solving procedure much reasonable. Another advantage of the method is that the analytical solutions obtained converge rapidly due to utilization of the sum functions. The application of the method is extensive and can also handle moderately thick and thick elastic plates as well as bending and vibration problems. The present results are validated by extensive numerical comparison with the FEA using (ABAQUS) software and the existing analytical solutions which show satisfactory agreement.
Keywords
double finite sine integral transform method; buckling analysis; analytical solution; rectangular thin plate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Adany, S., Visy, D. and Nagy, R. (2018), "Constrained shell Finite Element Method, Part 2: application to linear buckling analysis of thin-walled members", Thin-Walled Struct, 128, 56-70. https://doi.org/10.1016/j.tws.2017.01.022.   DOI
2 Bui, T.Q. (2011), "Buckling analysis of simply supported composite laminates subjected to an in-plane compression load by a novel mesh-free method", Vietnam J. Mech., 33(2), 65-78. https://doi.org/10.15625/0866-7136/33/2/39.   DOI
3 Bui, T.Q. and Nguyen, M.N. (2011), "A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates", Struct. Eng. Mech., 39(4), 579-598. https://doi.org/10.12989/sem.2011.39.4.579.   DOI
4 Bui, T.Q., Nguyen, M.N. and Zhang, C. (2011), "Buckling analysis of Reissner-Mindlin plates subjected to in-plane edge loads using a shear-locking-free and meshfree method", Eng. Anal. Bound Elem., 35(9), 1038-1053. https://doi.org/10.1016/j.enganabound.2011.04.001.   DOI
5 Civalek, O., Korkmaz, A. and Demir, C. (2010), "Discrete singular convolution approach for buckling analysis of rectangular Kirchhoff plates subjected to compressive loads on twoopposite edges", Adv. Eng. Softw., 41(4), 557-560. https://doi.org/10.1016/j.advengsoft.2009.11.002.   DOI
6 Timoshenko, S.P. (1961). Theory of Elastic Stability Second Edition. McGraw-Hill Book Company, Inc., New York, USA.
7 Singhatanadgid, P. and Taranajetsada, P. (2016), "Vibration analysis of stepped rectangular plates using the extended Kantorovich method", Mech. Adv. Mater. Struct., 23(2), 201-215. https://doi.org/10.1080/15376494.2014.949922.   DOI
8 Tian, B., Li, R. and Zhong, Y. (2015), "Integral transform solutions to the bending problems of moderately thick rectangular plates with all edges free resting on elastic foundations", Appl. Math. Model., 39(1), 128-136. https://doi.org/10.1016/j.apm.2014.05.012.   DOI
9 Tian, B., Zhong, Y. and Li, R. (2011), "Analytic bending solutions of rectangular cantilever thin plates", Arch. Civ. Mech. Eng., 11(4), 1043-1052. https://doi.org/10.1016/S1644-9665(12)60094-6.   DOI
10 Ullah, S., Zhong, Y. and Zhang, J. (2019), "Analytical buckling solutions of rectangular thin plates by straightforward generalized integral transform method", Int. J. Mech. Sci., 152, 535-544. https://doi.org/10.1016/j.ijmecsci.2019.01.025.   DOI
11 Wang, B., Li, P. and Li, R. (2016), "Symplectic superposition method for new analytic buckling solutions of rectangular thin plates", Int. J. Mech. Sci., 119, 432-441. https://doi.org/10.1016/j.ijmecsci.2016.11.006.   DOI
12 Wang, J., Liew, K. M., Tan, M. J. and Rajendran, S. (2002), "Analysis of rectangular laminated composite plates via FSDT meshless method", Int. J. Mech. Sci., 44(7), 1275-1293. https://doi.org/ 10.1016/S0020-7403(02)00057-7.   DOI
13 Wang, X. and Huang, J. (2009), "Elastoplastic buckling analyses of rectangular plates under biaxial loadings by the differential qudrature method", Thin-Walled Struct., 47(1), 14-20. https://doi.org/10.1016/j.tws.2008.04.006.   DOI
14 Jeyaraj, P. (2013), "Buckling and free vibration behavior of an isotropic plate under nonuniform thermal load", Int. J. Struct. Stab. Dyn., 13(03), https://doi.org/10.1142/S021945541250071X.
15 Civalek, O. and Yavas, A. (2008), "Discrete singular convolution for buckling analyses of plates and columns", Struct. Eng. Mech., 29(3), 279-288. https://doi.org/10.12989/sem.2008.29.3.279.   DOI
16 Ghannadpour, S.A.M. and Ovesy, H.R. (2009), "The application of an exact finite strip to the buckling of symmetrically laminated composite rectangular plates and prismatic plate structures", Compos. Struct., 89(1), 151-158. https://doi.org/10.1016/j.compstruct.2008.07.014.   DOI
17 Huang, C.S., Lee, H.T., Li, P.Y., Hu, K.C., Lan, C.W. and Chang, M.J. (2019), "Three-dimensional buckling analyses of cracked functionally graded material plates via the MLS-Ritz method", Thin-Walled Struct, 134, 189-202. https://doi.org/10.1016/j.tws.2018.10.005.   DOI
18 Jiang, L., Wang, Y. and Wang, X. (2008), "Buckling analysis of stiffened circular cylindrical panels using differential quadrature element method", Thin-Walled Struct., 46(4), 390-398. https://doi.org/10.1016/j.tws.2007.09.004.   DOI
19 Karamooz Ravari, M.R. and Shahidi, A.R. (2013), "Axisymmetric buckling of the circular annular nanoplates using finite difference method", Meccanica, 48(1), 135-144. https://doi.org/10.1007/s11012-012-9589-3.   DOI
20 Karamooz Ravari, M.R., Talebi, S. and Shahidi, A.R. (2014), "Analysis of the buckling of rectangular nanoplates by use of finite-difference method", Meccanica, 49(6), 1443-1455. https://doi.org/10.1007/s11012-014-9917-x.   DOI
21 Mahendran, M. and Murray, N. (1986), "Elastic buckling analysis of ideal thin-walled structures under combined loading using a finite strip method", Thin-Walled Struct., 4(5), 329-362. https://doi.org/10.1016/0263-8231(86)90029-7.   DOI
22 Wang, X., Tan, M. and Zhou, Y. (2003), "Buckling analyses of anisotropic plates and isotropic skew plates by the new version differential quadrature method", Thin-Walled Struct., 41(1), 15-29. https://doi.org/10.1016/S0263-8231(02)00100-3.   DOI
23 Lim, C. W., Lu, C. F., Xiang, Y. and Yao, W. (2009), "On new symplectic elasticity approach for exact free vibration solutions of rectangular Kirchhoff plates", Int. J. Eng. Sci., 47(1), 131-140. https://doi.org/10.1016/j.ijengsci.2008.08.003.   DOI
24 Lim, C. W. and Xu, X. S. (2010), "Symplectic elasticity: theory and applications", Appl. Mech. Rev., 63(5), 050802. https://doi.org/10.1115/1.4003700.   DOI
25 Zhong, Y. and Yin, J.H. (2008), "Free vibration analysis of a plate on foundation with completely free boundary by finite integral transform method", Mech. Res. Commun., 35(4), 268-275. https://doi.org/10.1016/j.mechrescom.2008.01.004.   DOI
26 Zhong, Y., Zhao, X. and Liu, H. (2014), "Vibration of plate on foundation with four edges free by finite cosine integral transform method", Lat. Am. J. Solids Struct., 11(5), 854-863. https://doi.org/10.1590/S1679-78252014000500008.   DOI
27 Zhou, D., Cheung, Y.K. and Kong, J. (2000), "Free vibration of thick, layered rectangular plates with point supports by finite layer method", Int. J. Solids Struct., 37(10), 1483-1499. https://doi.org/10.1016/S0020-7683(98)00316-3.   DOI
28 Liu, B. and Xing, Y. (2011), "Exact solutions for free vibrations of orthotropic rectangular Mindlin plates", Compos. Struct., 93(7), 1664-1672. https://doi.org/ 10.1016/j.compstruct.2011.01.014.   DOI
29 Liu, B., Xing, Y. F. and Reddy, J. N. (2014), "Exact compact characteristic equations and new results for free vibrations of orthotropic rectangular Mindlin plates", Compos. Struct., 118, 316-321. https://doi.org/10.1016/j.compstruct.2014.07.051.   DOI
30 Liu, Y. and Li, R. (2010), "Accurate bending analysis of rectangular plates with two adjacent edges free and the others clamped or simply supported based on new symplectic approach", Appl. Math. Model., 34(4), 856-865. https://doi.org/10.1016/j.apm.2009.07.003.   DOI
31 Mijuskovic, O., Coric, B. and Scepanovic, B. (2015), "Accurate buckling loads of plates with different boundary conditions under arbitrary edge compression", Int. J. Mech. Sci., 101, 309-323. https://doi.org/10.1016/j.ijmecsci.2015.07.017.   DOI
32 Ovesy, H. R., Ghannadpour, S. A. M. and Zia-Dehkordi, E. (2013), "Buckling analysis of moderately thick composite plates and plate structures using an exact finite strip", Compos. Struct., 95, 697-704. https://doi.org/10.1016/j.compstruct.2012.08.009.   DOI
33 Simulia, D. S. (2013). "Abaqus 6.13 Analysis User's Guide." Dassault Systems, Providence, RI, USA.
34 Yufeng, X. and Wang, Z. (2017), "Closed form solutions for thermal buckling of functionally graded rectangular thin plates", Appl. Sci., 7(12), 1256. https://doi.org/10.3390/app7121256.   DOI
35 Wu, C.P. and Lin, H.R. (2015), "Three-dimensional dynamic responses of carbon nanotube-reinforced composite plates with surface-bonded piezoelectric layers using Reissner's mixed variational theorem-based finite layer methods", J. Intell. Mater. Syst. Struct., 26(3), 260-279. https://doi.org/10.1177/1045389X14523859.   DOI
36 Xiang, Y., Wang, C.M. and Kitipornchai, S. (2003), "Exact buckling solutions for rectangular plates under intermediate and end uniaxial loads", J. Eng. Mech., 129(7), 835-838. https://doi.org/10.1061/(ASCE)0733-9399(2003)129:7(835).   DOI
37 Xing, Y.F. and Liu, B. (2009), "New exact solutions for free vibrations of thin orthotropic rectangular plates", Compos. Struct., 89(4), 567-574. https://doi.org/10.1016/j.compstruct.2008.11.010.   DOI
38 Li, R., Tian, Y., Wang, P., Shi, Y. and Wang, B. (2016), "New analytic free vibration solutions of rectangular thin plates resting on multiple point supports", Int J. Mech. Sci., 110, 53-61. https://doi.org/10.1016/j.ijmecsci.2016.03.002.   DOI
39 Komur, M.A. and Sonmez, M. (2015), "Elastic buckling behavior of rectangular plates with holes subjected to partial edge loading", J. Constr. Steel Res., 112, 54-60. https://doi.org/10.1016/j.jcsr.2015.04.020.   DOI
40 Lau, S. and Hancock, G. (1986), "Buckling of thin flat-walled structures by a spline finite strip method", Thin-Walled Struct., 4(4), 269-294. https://doi.org/10.1016/0263-8231(86)90034-0.   DOI
41 Li, R., Wang, B., Li, G., Du, J. and An, X. (2015), "Analytic free vibration solutions of rectangular thin plates point-supported at a corner", Int. J. Mech. Sci., 96, 199-205. https://doi.org/10.1016/j.ijmecsci.2015.04.004.   DOI
42 Li, R., Wang, B. and Li, P. (2014), "Hamiltonian system-based benchmark bending solutions of rectangular thin plates with a corner point-supported", Int J. Mech. Sci., 85, 212-218. https://doi.org/10.1016/j.ijmecsci.2014.05.004.   DOI
43 Li, R., Zheng, X., Wang, H., Xiong, S., Yan, K. and Li, P. (2018), "New analytic buckling solutions of rectangular thin plates with all edges free", Int. J. Mech. Sci., 144, 67-73. https://doi.org/10.1016/j.ijmecsci.2018.05.041.   DOI
44 Zhang, Y. and Zhang, S. (2018), "Free transverse vibration of rectangular orthotropic plates with two opposite edges rotationally restrained and remaining others free", Appl. Sci., 9(1), 22. https://doi.org/10.3390/app9010022.   DOI
45 Zhang, J., Zhou, C., Ullah, S., Zhong, Y. and Li, R. (2018), "Two-dimensional generalized finite integral transform method for new analytic bending solutions of orthotropic rectangular thin foundation plates", Appl. Math. Lett., 92, 8-14. https://doi.org/10.1016/j.aml.2018.12.019.
46 Zhang, S. and Xu, L. (2018), "Analytical solutions for flexure of rectangular orthotropic plates with opposite rotationally restrained and free edges", Arch. Civ. Mech. Eng., 18(3), 965-972. https://doi.org/10.1016/j.acme.2018.02.005.   DOI
47 Zhang, S. and Xu, L. (2017), "Bending of rectangular orthotropic thin plates with rotationally restrained edges: A finite integral transform solution", Appl. Math. Model., 46, 48-62. https://doi.org/10.1016/j.apm.2017.01.053.   DOI
48 Lim, C.W., Cui, S. and Yao, W.A. (2007), "On new symplectic elasticity approach for exact bending solutions of rectangular thin plates with two opposite sides simply supported", Int. J. Solids. Struct., 44(16), 5396-5411. https://doi.org/10.1016/j.ijsolstr.2007.01.007.   DOI
49 Li, R., Zhong, Y., Tian, B. and Liu, Y. (2009), "On the finite integral transform method for exact bending solutions of fully clamped orthotropic rectangular thin plates", Appl. Math. Lett., 22(12), 1821-1827. https://doi.org/10.1016/j.aml.2009.07.003.   DOI