Browse > Article
http://dx.doi.org/10.1016/j.net.2021.10.003

A novel analytical solution of the deformed Doppler broadening function using the Kaniadakis distribution and the comparison of computational efficiencies with the numerical solution  

Abreu, Willian V. de (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro)
Martinez, Aquilino S. (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro)
Carmo, Eduardo D. do (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro)
Goncalves, Alessandro C. (Nuclear Engineering Program - PEN/COPPE-Universidade Federal do Rio de Janeiro)
Publication Information
Nuclear Engineering and Technology / v.54, no.4, 2022 , pp. 1471-1481 More about this Journal
Abstract
This paper aims to present a new method for obtaining an analytical solution for the Kaniadakis Doppler broadening (KDB) function. Also, in this work, we report the computational efficiencies of this solution compared with the numerical one. The solution of the differential equation achieved in this paper is free of approximations and is, consequently, a more robust methodology for obtaining an analytical representation of ψk. Moreover, the results show an improvement in efficiency using the analytical approximation, indicating that it may be helpful in different applications that require the calculation of the deformed Doppler broadening function.
Keywords
Deformed Doppler broadening function; Generalized voigt functions; Kaniadakis distribution; Computational efficiencies;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 E.T. Jaynes, Information theory and statistical mechanics, Phys. Rev. 106 (1957) 620-630, https://doi.org/10.1103/PhysRev.106.620.   DOI
2 G. Kaniadakis, Statistical mechanics in the context of special relativity. II, Phys. Rev. E 72 (2005), 036108, https://doi.org/10.1103/PhysRevE.72.036108.   DOI
3 W.V. De Abreu, A.C. Goncalves, A.S. Martinez, An analytical approximation for the generalized interference term using the kaniadakis distribution, Proc Int Conf Nucl Eng 27 (2019) 1912, https://doi.org/10.1299/jsmeicone.2019.27.1912, 2019.   DOI
4 W.V. de Abreu, A.C. Goncalves, A.S. Martinez, New analytical formulations for the Doppler broadening function and interference term based on Kaniadakis distributions, Ann. Nucl. Energy 135 (2020), 106960, https://doi.org/10.1016/j.anucene.2019.106960.   DOI
5 A.Y. Abul-Magd, Non-extensive random-matrix theory based on Kaniadakis entropy, Phys. Lett. 361 (2007) 450-454, https://doi.org/10.1016/j.physleta.2006.09.080.   DOI
6 G. Kaniadakis, Statistical mechanics in the context of special relativity, Phys. Rev. E 66 (2002), 056125, https://doi.org/10.1103/PhysRevE.66.056125.   DOI
7 G. Kaniadakis, Non-linear kinetics underlying generalized statistics, Phys A Stat Mech Its Appl 296 (2001) 405-425, https://doi.org/10.1016/S0378-4371(01)00184-4.   DOI
8 G. Guedes, A.C. Goncalves, D.A. Palma, The Doppler broadening function using the kaniadakis distribution, Ann. Nucl. Energy 110 (2017) 453-458, https://doi.org/10.1016/j.anucene.2017.06.057.   DOI
9 W.V. de Abreu, A.C. Goncalves, A.S. Martinez, Analytical solution for the Doppler broadening function using the Kaniadakis distribution, Ann. Nucl. Energy 126 (2019) 262-268, https://doi.org/10.1016/j.anucene.2018.11.023.   DOI
10 P.-H. Chavanis, Generalized thermodynamics and Fokker-Planck equations: applications to stellar dynamics and two-dimensional turbulence, Phys. Rev. E 68 (2003), 036108, https://doi.org/10.1103/PhysRevE.68.036108.   DOI
11 A.M. Teweldeberhan, H.G. Miller, R. Tegen, k-deformed statistics and the formation of a quark-gluon plasma, Int. J. Mod. Phys. E 12 (2003) 669-673, https://doi.org/10.1142/S021830130300148X.   DOI
12 E.M.C. Abreu, J.A. Neto, A.C.R. Mendes, A. Bonilla, R.M. de Paula, Cosmological considerations in Kaniadakis statistics, EPL (Europhysics Lett 124 (2018) 30003, https://doi.org/10.1209/0295-5075/124/30003.   DOI
13 A.I. Olemskoi, V.O. Kharchenko, V.N. Borisyuk, Multifractal spectrum of phase space related to generalized thermostatistics, Phys A Stat Mech Its Appl 387 (2008) 1895-1906, https://doi.org/10.1016/j.physa.2007.11.045.   DOI
14 I. Lourek, M. Tribeche, Dust charging current in non equilibrium dusty plasma in the context of Kaniadakis generalization, Phys A Stat Mech Its Appl 517 (2019) 522-529, https://doi.org/10.1016/j.physa.2018.11.008.   DOI
15 E.M.C. Abreu, J.A. Neto, E.M. Barboza, R.C. Nunes, Tsallis and Kaniadakis statistics from the viewpoint of entropic gravity formalism, Int J Mod Phys A 32 (2017), 1750028, https://doi.org/10.1142/S0217751X17500282.   DOI
16 T. Wada, H. Suyari, A two-parameter generalization of Shannon-Khinchin axioms and the uniqueness theorem, Phys. Lett. 368 (2007) 199-205, https://doi.org/10.1016/j.physleta.2007.04.009.   DOI
17 F. Topsoe, Entropy and equilibrium via games of complexity, Phys A Stat Mech Its Appl 340 (2004) 11-31, https://doi.org/10.1016/j.physa.2004.03.073.   DOI
18 T. Wada, H. Suyari, k-generalization of Gauss' law of error, Phys. Lett. 348 (2006) 89-93, https://doi.org/10.1016/j.physleta.2005.08.086.   DOI
19 D.A.P. Palma, A.D.C. Goncalves, A.S. Martinez, An alternative analytical formulation for the Voigt function applied to resonant effects in nuclear processes, Nucl Instruments Method. Phys Res Sect A Accel Spectrometers, Detect Assoc Equip 654 (2011) 406-411, https://doi.org/10.1016/j.nima.2011.07.029.   DOI
20 K. Tada, Y. Nagaya, S. Kunieda, K. Suyama, T. Fukahori, FRENDY: a new nuclear data processing system being developed at JAEA, EPJ Web Conf. 146 (2017), 02028, https://doi.org/10.1051/epjconf/201714602028.   DOI
21 D.A. Palma, A.S. Martinez, F.C. Silva, The derivation of the Doppler broadening function using Frobenius method, J. Nucl. Sci. Technol. 43 (2006) 617-622, https://doi.org/10.1080/18811248.2006.9711141.   DOI
22 G. Pagnini, F. Mainardi, Evolution equations for the probabilistic generalization of the Voigt profile function, J. Comput. Appl. Math. 233 (2010) 1590-1595, https://doi.org/10.1016/j.cam.2008.04.040.   DOI
23 G. Kaniadakis, M.M. Baldi, T.S. Deisboeck, G. Grisolia, D.T. Hristopulos, A.M. Scarfone, et al., The k-statistics approach to epidemiology, Sci. Rep. 10 (2020) 19949, https://doi.org/10.1038/s41598-020-76673-3.   DOI
24 C.W. Churchill, S.S. Vogt, J.C. Charlton, The physical conditions of intermediate-redshift M[CLC]g[/CLC] [CSC]ii[/CSC] absorbing clouds from Voigt profile Analysis, Astron. J. 125 (2003) 98-115, https://doi.org/10.1086/345513.   DOI
25 R.A. Kycia, S. Jadach, Relativistic Voigt profile for unstable particles in high energy physics, J. Math. Anal. Appl. 463 (2018) 1040-1051, https://doi.org/10.1016/j.jmaa.2018.03.065.   DOI
26 C. Josey, P. Ducru, B. Forget, K. Smith, Windowed multipole for cross section Doppler broadening, J. Comput. Phys. 307 (2016) 715-727, https://doi.org/10.1016/j.jcp.2015.08.013.   DOI
27 D. De Sousa Meneses, G. Gruener, M. Malki, P. Echegut, Causal Voigt profile for modeling reflectivity spectra of glasses, J. Non-Cryst. Solids 351 (2005) 124-129, https://doi.org/10.1016/j.jnoncrysol.2004.09.028.   DOI
28 Python, Timeit, n.d. https://docs.python.org/3/library/timeit.html.
29 R.B. Von Dreele, S.M. Clarke, J.P.S. Walsh, 'Pink'-beam X-ray powder diffraction profile and its use in Rietveld refinement, J. Appl. Crystallogr. 54 (2021) 3-6, https://doi.org/10.1107/S1600576720014624.   DOI
30 T. Steininger, M. Greiner, F. Beaujean, T. Ensslin, d2o: a distributed data object for parallel high-performance computing in Python, J Big Data 3 (2016) 17, https://doi.org/10.1186/s40537-016-0052-5.   DOI
31 K. Tada, S. Kunieda, Y. Nagaya, Nuclear Data Processing Code FRENDY Version 1, Japan Atomic Energy Agency, 2018, https://doi.org/10.11484/jaea-datacode-2018-014.   DOI
32 J.M. Huntenburg, C.J. Steele, P.-L. Bazin, Nighres: processing tools for high-resolution neuroimaging, GigaScience 7 (2018) 1-9, https://doi.org/10.1093/gigascience/giy082.   DOI
33 P. Heyken Soares, Zone-based public transport route optimisation in an urban network, Public Transp 13 (2021) 197-231, https://doi.org/10.1007/s12469-020-00242-0.   DOI
34 S. Esmail, P. Agrawal, S. Aly, A novel analytical approach for advection diffusion equation for radionuclide release from an area source, Nucl Eng Technol 52 (2020) 819-826, https://doi.org/10.1016/j.net.2019.09.018.   DOI
35 J.C. Carvalho, R. Silva, J.D. do Nascimento jr., B.B. Soares, J.R. De Medeiros, Observational measurement of open stellar clusters: a test of Kaniadakis and Tsallis statistics, EPL (Europhysics Lett 91 (2010) 69002, https://doi.org/10.1209/0295-5075/91/69002.   DOI
36 G.F. Simmons, in: Differential Equations with Applications and Historical Notes, second ed., McGraw=Hill, Inc., New York, 1991.
37 G.B. Arfken, H.J. Weber, F.H. Harris, in: Mathematical Methods for Physicists, seventh ed., Academic Press, Elesvier, 2013. Waltham.
38 W.E. Boyce, R.C. DiPrima, Second order linear equations, in: Elem. Differ. Equations Bound. Value Probl, tenth ed., John Wiley & Sons, 2012.
39 P. Walls, Simpson's Rule, Univ Br Columbia, 2019. https://secure.math.ubc.ca/~pwalls/math-python/integration/simpsons-rule/.
40 J.C. Jo, J.-J. Jeong, F.J. Moody, Numerical and analytical predictions of nuclear steam generator secondary side flow field during blowdown due to a feed-water line break, Nucl Eng Technol 53 (2021) 1029-1040, https://doi.org/10.1016/j.net.2020.08.022.   DOI
41 T.P.R. Campos, A.S. Martinez, The dependence of practical width on temperature, Ann. Nucl. Energy 14 (1987) 241-247, https://doi.org/10.1016/0306-4549(87)90045-4.   DOI
42 T. Solc, M. Mohorcic, C. Fortuna, A methodology for experimental evaluation of signal detection methods in spectrum sensing, PLoS One 13 (2018), e0199550, https://doi.org/10.1371/journal.pone.0199550.   DOI
43 WV de Abreu, Solucao analitica da funcao de alargamento Doppler usando a distribuicao de Kaniadakis, Universidade Federal do Rio de Janeiro, 2020, https://doi.org/10.13140/RG.2.2.32080.12802/3.   DOI