• 제목/요약/키워드: numerical solution

검색결과 4,022건 처리시간 0.032초

Linearized instability analysis of frame structures under nonconservative loads: Static and dynamic approach

  • Hajdo, Emina;Mejia-Nava, Rosa Adela;Imamovic, Ismar;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • 제10권1호
    • /
    • pp.79-102
    • /
    • 2021
  • In this paper we deal with instability problems of structures under nonconservative loading. It is shown that such class of problems should be analyzed in dynamics framework. Next to analytic solutions, provided for several simple problems, we show how to obtain the numerical solutions to more complex problems in efficient manner by using the finite element method. In particular, the numerical solution is obtained by using a modified Euler-Bernoulli beam finite element that includes the von Karman (virtual) strain in order to capture linearized instabilities (or Euler buckling). We next generalize the numerical solution to instability problems that include shear deformation by using the Timoshenko beam finite element. The proposed numerical beam models are validated against the corresponding analytic solutions.

A photo-thermal interaction in semi-conductor medium with cylindrical cavity by analytical and numerical methods

  • Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • 제25권4호
    • /
    • pp.267-273
    • /
    • 2021
  • In this work, we compare the analytical solutions with the numerical solutions for photothermal interactions in semiconductor medium containing cylindrical cavity. This paper is devoted to a study of the photothermal interactions in semiconductor medium in the context of the coupled photo-thermal model. The basic equations are formulated in the domain of Laplace transform and the eigenvalue scheme are used to get the analytical solutions. The numerical solution is obtained by using the implicit finite difference method (IFDM). A comparison between the analytical solution and the numerical solutions are obtained. It is found that the implicit finite difference method (IFDM) is applicable, simple and efficient for such problems.

Simulating the performance of the reinforced concrete beam using artificial intelligence

  • Yong Cao;Ruizhe Qiu;Wei Qi
    • Advances in concrete construction
    • /
    • 제15권4호
    • /
    • pp.269-286
    • /
    • 2023
  • In the present study, we aim to utilize the numerical solution frequency results of functionally graded beam under thermal and dynamic loadings to train and test an artificial neural network. In this regard, shear deformable functionally-graded beam structure is considered for obtaining the natural frequency in different conditions of boundary and material grading indices. In this regard, both analytical and numerical solutions based on Navier's approach and differential quadrature method are presented to obtain effects of different parameters on the natural frequency of the structure. Further, the numerical results are utilized to train an artificial neural network (ANN) using AdaGrad optimization algorithm. Finally, the results of the ANN and other solution procedure are presented and comprehensive parametric study is presented to observe effects of geometrical, material and boundary conditions of the free oscillation frequency of the functionally graded beam structure.

Ritz법을 이용한 쐐기형 봉의 진동 해석 (Vibration Analysis of Wedge Type Bar by Ritz Method)

  • 박석주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권8호
    • /
    • pp.877-882
    • /
    • 2005
  • This paper discusses the lateral vibration of a bar which has its tip free. The uniform bar has a solution by summation of some simple exponential functions But if its shape is not uniform, its solution could be by Bessel's function, or mathematical solution could not be existed. Enen if the solution of Bessel's function exists. as Bessel function is a series function. we must got the solution by numerical method Hereby the author Proposes the ununiform beam solution of the matrix method by Ritz's method. and Proposes a new deflection shape function.

이산 최적 $H_{\infty}$-제어 문제의 최적해를 구하는 방법에 대한 연구 (Study on an optimum solution for discrete optimal $H_{\infty}$-control problem)

  • 하철근
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.565-568
    • /
    • 1996
  • In this paper, a solution method is proposed to calculate the optimum solution to discrete optimal H$_{.inf}$ control problem for feedback of linear time-invariant system states and disturbance variable. From the results of this study, condition of existence and uniqueness of its solution is that transfer matrix of controlled variable to input variable is left invertible and has no invariant zeros on the unit circle of the z-domain as well as extra geometric conditions given in this paper. Through a numerical example, the noniterative solution method proposed in this paper is illustrated.

  • PDF

경사진 봉의 진동 해석 (Vibration Analysis of Tapered Bar)

  • 박석주
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.984-987
    • /
    • 2003
  • This paper discusses the lateral vibration of a bar which has its tip free. The uniform bar has a solution by summation of some simple exponential functions. But if its shape is not uniform, its solution could be by Bessel's function, or mathematical solution could not be existed. Even if the solution of Bessel's function exists. as Bessel function is a series function, we must get the solution by numerical method, Hereof the author proposes the solution of the matrix method by Ritz's method, and proposes a new deflection shape

  • PDF

침투력을 고려한 토사터널 막장의 안정성 평가방법에 대한 고찰 (Evaluation of Tunnel Face Stability with the Consideration of Seepage Forces)

  • 남석우;이인모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.193-200
    • /
    • 1999
  • Since Broms and Bennermark(1967) suggested the face stability criterion based on laboratory extrusion tests and field observations, the face stability of a tunnel driven in cohesive material has been studied by several authors. And recently, more general solution for the tunnel front is given by Leca and Panet(1988). They adopted a limit state design concept to evaluate the face stability of a shallow tunnel driven into cohesionless material and showed that the calculated upper bound solution represented the actual behavior reasonably well. In this study, two factors are simultaneously considered for assessing tunnel face stability: One is the effective stress acting on the tunnel front calculated by upper bound solution; and the other is the seepage force calculated by numerical analysis under the condition of steady state ground water flow. The model tests were performed to evaluate the seepage force acting on the tunnel front and these results were compared with results of numerical analysis. Consequently, the methodology to evaluate the stability of a tunnel face including limit analysis and seepage analysis is suggested under the condition of steady state ground water flow.

  • PDF

유연한 구조물의 공간전파에 관한 해석적 해법 (Analytic Solution to the Spatial Propagation of the Flexible Structures)

  • 석진영;정은태;김유단
    • 대한기계학회논문집A
    • /
    • 제25권12호
    • /
    • pp.2040-2047
    • /
    • 2001
  • In this paper, a singularity problem of the state transition matrix is investigated in the spatial propagation when the spatial matrix differential equation is constructed via time finite element analysis. A parametric study shows that the degree of singularity of the state transition matrix depends on the degree of flexibility of the structures. As an alternative to avoid the numerical problems due to the singularity, an analytic solution fur spatial propagation of the flexible structures is proposed. In the proposed method, the spatial properties of the structure are analytically expressed by a combination of transcendental functions. The analytic solution serves fast and accurate results by eliminating the possibility of the error accumulation caused by the boundary condition. Several numerical examples are shown to validate the effectiveness of the proposed methods.

A novel solution for thick-walled cylinders made of functionally graded materials

  • Chen, Y.Z.
    • Smart Structures and Systems
    • /
    • 제15권6호
    • /
    • pp.1503-1520
    • /
    • 2015
  • This paper provides a novel solution for thick-walled cylinders made of functionally graded materials (FGMs). In the formulation, the cylinder is divided into N layers. On the individual layer, the Young's modulus is assumed to be a constant. For an individual layer, two undetermined constants are involved in the elastic solution. Those undetermined coefficients can be evaluated from the continuation condition along interfaces of layers and the boundary conditions at the inner surface and outer surface of cylinder. Finally, the solution for thick-walled cylinders made of functionally graded materials is obtainable. This paper provides several numerical examples which are useful for engineer to design a cylinder made of FGMs.

A Closed-Form Solution of Linear Spectral Transformation for Robust Speech Recognition

  • Kim, Dong-Hyun;Yook, Dong-Suk
    • ETRI Journal
    • /
    • 제31권4호
    • /
    • pp.454-456
    • /
    • 2009
  • The maximum likelihood linear spectral transformation (ML-LST) using a numerical iteration method has been previously proposed for robust speech recognition. The numerical iteration method is not appropriate for real-time applications due to its computational complexity. In order to reduce the computational cost, the objective function of the ML-LST is approximated and a closed-form solution is proposed in this paper. It is shown experimentally that the proposed closed-form solution for the ML-LST can provide rapid speaker and environment adaptation for robust speech recognition.