• Title/Summary/Keyword: numerical result

Search Result 5,120, Processing Time 0.029 seconds

A Study on the Application of FLO-2D Model for Analysis of Debris Flow Damage Area (토석류 피해지역 분석을 위한 FLO-2D 모형의 적용에 관한 연구)

  • Jo, Hang-Il;Jun, Kye-Won
    • Journal of Korean Society of Disaster and Security
    • /
    • v.15 no.2
    • /
    • pp.37-44
    • /
    • 2022
  • As the frequency of torrential rains and typhoons increases due to climate change, the frequency of occurrence of debris flow is also increasing. In particular, in the case of Kangwon-do, the occurrence of damage caused by mountain disasters is increasing as it has a topographical characteristic where the mountains and the coast are in contact. In order to analyze the flow characteristics in the sedimentary part of the debris flow, input data were constructed through numerical maps and field data, and a two-dimensional model, FLO-2D, was simulated. The damaged area was divided into the inflow part of the debris flow, the village center, and the vicinity of the port, and the flow center and flow velocity of the debris flow were simulated and compared with field survey data. As a result, the maximum flow depth was found to be 2.4 m at the debris flow inlet, 2.7 m at the center of the village, and 1.4 m at the port adjacent to the port so the results were similar when compared to the field survey. And in the case of the maximum flow velocity, it was calculated as 3.6 m/s at the debris flow inlet, 4.9 m/s in the center of the village and 1.2 m/s in the vicinity of the port, so It was confirmed that the maximum flow center occurred in the section where the maximum flow rate appeared.

Damage Analysis of Manganese Crossings for Turnout System of Sleeper Floating Tracks on Urban Transit (도시철도 침목플로팅궤도 분기기 망간크로싱의 손상해석)

  • Choi, Jung-Youl;Yoon, Young-Sun;Ahn, Dae-Hee;Han, Jae-Min;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.5
    • /
    • pp.515-524
    • /
    • 2022
  • The turnout system of the sleeper floating tracks (STEDEF) on urban transit is a Anti-vibration track composed of a wooden sleeper embedded in a concrete bed and a sleeper resilience pad under the sleeper. Therefore, deterioration and changes in spring stiffness of the sleeper resilience pad could be cause changes in sleeper support conditions. The damage amount of manganese crossings that occurred during the current service period of about 21 years was investigated to be about 17% of the total amount of crossings, and it was analyzed that the damage amount increased after 15 years of use (accumulated passing tonnage of about 550 million tons). In this study, parameter analysis (wheel position, sleeper support condition, and dynamic wheel load) was performed using a three-dimensional numerical model that simulated real manganese crossing and wheel profile, to analyze the damage type and cause of manganese crossing that occurred in the actual field. As a result of this study, when the voided sleeper occurred in the sleeper around the nose, the stress generated in the crossing nose exceeded the yield strength according to the dynamic wheel load considering the design track impact factor. In addition, the analysis results were evaluated to be in good agreement with the location of damage that occurred in the actual field. Therefore, in order to minimize the damage of the manganese crossing, it is necessary to keep the sleeper support condition around the nose part constant. In addition, by considering the uniformity of the boundary conditions under the sleepers, it was analyzed that it would be advantageous to to replace the sleeper resilience pad together when replacing the damaged manganese crossing.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Hybrid CMA-ES/SPGD Algorithm for Phase Control of a Coherent Beam Combining System and its Performance Analysis by Numerical Simulations (CMA-ES/SPGD 이중 알고리즘을 통한 결맞음 빔 결합 시스템 위상제어 및 동작성능에 대한 전산모사 분석)

  • Minsu, Yeo;Hansol, Kim;Yoonchan, Jeong
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • In this study, we propose a hybrid phase-control algorithm for multi-channel coherent beam combining (CBC) system by combining the covariant matrix adaption evolution strategy (CMA-ES) and stochastic parallel gradient descent (SPGD) algorithms and analyze its operational performance. The proposed hybrid CMA-ES/SPGD algorithm is a sequential process which initially runs the CMA-ES algorithm until the combined final output intensity reaches a preset interim value, and then switches to running the SPGD algorithm to the end of the whole process. For ideal 7-channel and 19-channel all-fiber-based CBC systems, we have found that the mean convergence time can be reduced by about 10% in comparison with the case when the SPGD algorithm is implemented alone. Furthermore, we analyzed a more realistic situation in which some additional phase noise was introduced in the same CBC system. As a result, it is shown that the proposed algorithm reduces the mean convergence time by about 17% for a 7-channel CBC system and 16-27% for a 19-channel system compared to the existing SPGD alone algorithm. We expect that for implementing a CBC system in a real outdoor environment where phase noise cannot be ignored, the hybrid CMA-ES/SPGD algorithm proposed in this study will be exploited very usefully.

Examination of Root Causes of Buckling in the Stern Structure of an Oil Tanker using Numerical Modeling (수치해석 모델링을 이용한 유조선 선미부 구조에 발생한 좌굴 발생 원인 검토)

  • Myung-Su Yi;Joo-Shin Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1259-1266
    • /
    • 2022
  • Recently, due to the specialization of structural design standards and evaluation methods, the classification rules are being integrated. A good example is the common international rules (CSR). However, detailed regulations are presented only for the cargo hold area where the longitudinal load is greatly applied, and no specific evaluation guidelines exist for the bow and stern structures. Structural design of the mentioned area is carried out depending on the design experience of the shipbuilder, and because no clear standard exists even in the classification, determining the root cause is difficult even if a structural damage problem occurs. In this study, an engineering-based solution was presented to identify the root cause of representative cases of buckling damage that occurs mainly in the stern. Buckling may occur at the panel wall owing to hull girder bending moment acting on the stern structure, and the plate thickness must be increased or vertical stiffeners must be added to increase the buckling rigidity. For structural strength verification based on finite element analysis modeling, reasonable solutions for load conditions, boundary conditions, modeling methods, and evaluation criteria were presented. This result is expected to be helpful in examining the structural strength of the stern part of similar carriers in the future.

Current Status and Future Plans for Surface Current Observation by HF Radar in the Southern Jeju (제주 남부 HF Radar 표층해류 관측 현황 및 향후계획)

  • Dawoon, Jung;Jae Yeob, Kim;Jae-il, Kwon;Kyu-Min, Song
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.198-210
    • /
    • 2022
  • The southern strait of Jeju is a divergence point of the Tsushima Warm Current (TWC), and it is the starting point of the thermohaline circulation in the waters of the Korean Peninsula, affecting the size and frequency of marine disasters such as typhoons and tsunamis, and has a very important oceanographic impact, such as becoming a source of harmful organisms and radioactively contaminated water. Therefore, for an immediate response to these maritime disasters, real-time ocean observation is required. However, compared to other straits, in the case of southern Jeju, such wide area marine observations are insufficient. Therefore, in this study, surface current field of the southern strait of Jeju was calculated using High-Frequency radar (HF radar). the large surface current field is calculated, and post-processing and data improvement are carried out through APM (Antenna Pattern Measurement) and FOL (First Order Line), and comparative analysis is conducted using actual data. As a result, the correlation shows improvement of 0.4~0.7 and RMSE of about 1~19 cm/s. These high-frequency radar observation results will help solve domestic issues such as response to typhoons, verification of numerical models, utilization of wide area wave data, and ocean search and rescue in the future through the establishment of an open data network.

Analysis of Bias in the Runoff Results Due to the Application of Effective Soil Depth (유효토심을 적용한 유출해석 결과의 왜곡 분석)

  • Sunguk Song;Chulsang Yoo
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.121-131
    • /
    • 2023
  • This study examines the possible problem in the rainfall-runoff analysis process using the VIC (Variable Infiltration Capacity) model caused by using the effective soil depth instead of the soil depth. The parameters of the model are determined as follows. First, parameters that can be determined using available numerical information are fixed. For parameters related to direct runoff and base runoff, the recommended values of the VIC model are applied. In the case of soil depth, four cases are considered: (1) the effective soil depth is applied as the soil depth, (2) 1.5 times of the effective soil depth is applied as the soil depth by reflecting the vertical structure of the soil layer, (3) 1.25 times of the effective soil depth, and (4) 2.0 times of the effective soil depth as alternative soil depths. This study simulates the rainfall-runoff for the period from 1983 to 2020 targeting the Chungju Dam and Soyang River Dam basins of the Han River system. As a result of the study, it is confirmed that when the effective soil depth is applied instead of the soil depth, direct runoff and baseflow have opposite effects, and direct runoff increases by more than 3% while base runoff decreases by the same scale. In addition, the most influential factor in the estimation of the effective soil depth in the Chungju Dam and Soyanggang Dam basins is found to be the proportion of rock outcrop area. The difference between the direct runoff ratio and the base runoff ratio in the two basins is conformed significantly different due to the influence of the rock outcrop area.

Appropriateness Evaluation of Train Vibration Evaluation Method Considering Vibration Levels of Retaining Wall Adjacent to Railway Tunnels (철도터널과 인접한 흙막이 가시설의 진동 수준을 고려한 열차진동 평가방법의 적정성 평가)

  • Donghee Woo;Yeongjin Lee;Yongjae Song;Kangil Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.24 no.10
    • /
    • pp.5-13
    • /
    • 2023
  • With the recent increase in development projects centered on urban areas, the construction of building structures is increasing in areas adjacent to the urban railway operation section. In this case, since ground vibration is generated by the train in operation and affects the adjacent structure, the building structure needs appropriate vibration reduction against train vibration generated at the adjacent location from the desing phase. However, the vibration levels calculated vary depending on the train vibration evaluation method, which means that the implementation of vibration reduction may vary depending on the train vibration evaluation method. Therefore, this study calculated the vibration level according to ground conditions, tunnel depth and separation distance between vibration sources and adjacent structures using numerical analysis and train vibration evaluation methods, and compared them to designning phase. And the appropriate separation distance between the tunnel and the adjacent structure was evaluated by comparing the vibration level with the allowable standards. As a result of the study, the Ungar and Bender evaluation method is evaluated as the most appropriate among the train vibration evaluation methods, and the appropriate separation distance between the tunnel and the adjacent structure is evaluated to be more than 4.5D.

A Study on Safety Assessment for Low-flashpoint and Eco-friendly Fueled Ship (친환경연료 선박의 가스누출 피해저감을 위한 연구)

  • Ryu Bo Rim;Duong Phan Anh;Kang Ho Keun
    • Journal of Navigation and Port Research
    • /
    • v.47 no.1
    • /
    • pp.25-36
    • /
    • 2023
  • To limit greenhouse gas emissions from ships, numerous environmental regulations and standards have been taken into effect. As a result, alternative fuels such as liquefied natural gas (LNG), liquefied petroleum gas (LPG), ammonia, and biofuels have been applied to ships. Most of these alternative fuels are low flashpoint fuels in the form of liquefied gas. Their use is predicted to continue to increase. Thus, management regulations for using low flash point fuel as a ship fuel are required. However, they are currently insufficient. In the case of LNG, ISO standards have been prepared in relation to bunkering. The Society for Gas as a Marine Fuel (SGMF), a non-governmental organization (NGO), has also prepared and published a guideline on LNG bunkering. The classification society also requires safety management areas to be designated according to bunkering methods and procedures for safe bunkering. Therefore, it is necessary to establish a procedure for setting a safety management area according to the type of fuel, environmental conditions, and leakage scenarios and verify it with a numerical method. In this study, as a feasibility study for establishing these procedures, application status and standards of the industry were reviewed. Classification guidelines and existing preceding studies were analyzed and investigated. Based on results of this study, a procedure for establishing a safety management area for bunkering in domestic ports of Korea can be prepared.

Modeling of algal fluctuations in the reservoir according to the opening of Yeongju Dam (영주댐 개방에 따른 호내 조류 변동 모의)

  • Lee, Dong Yeol;Kim, Seong Eun;Baek, Kyong Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.173-184
    • /
    • 2023
  • Due to climate change, algal blooms frequently occur not only in Korea but also around the world, and the risk of toxicity of harmful algae has recently been issued. It is known that the representative harmful algae, cyanobacteria, are caused by the intersection of three factors: water temperature, residence time, and nutrients. In this study, water quality simulation was carried out using EFDC, a three-dimensional numerical model, to analyze the variations in water quality due to the decrease of residence time according to the opening of Yeongju Dam in Naeseong-Cheon. In fact, the concentration of chlorophyll-a in Yeongju Dam in the summer of 2021 was significant, exceeding the 'algae warning' for a long time based on the previous algae warning system. On the other hand, as a result of performing the simulation under the condition that the dam gate was completely opened, the concentration of chlorophyll-a was mostly reduced below the 'algae warning' level during the simulation period. It was confirmed that reducing the residence time by restoring the flow of Naeseong-Cheon is a way to immediately reduce algae in Yeongju Dam.