DOI QR코드

DOI QR Code

Hybrid CMA-ES/SPGD Algorithm for Phase Control of a Coherent Beam Combining System and its Performance Analysis by Numerical Simulations

CMA-ES/SPGD 이중 알고리즘을 통한 결맞음 빔 결합 시스템 위상제어 및 동작성능에 대한 전산모사 분석

  • Minsu, Yeo (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Hansol, Kim (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Yoonchan, Jeong (Department of Electrical and Computer Engineering, Seoul National University)
  • 여민수 (서울대학교 전기정보공학부) ;
  • 김한솔 (서울대학교 전기정보공학부) ;
  • 정윤찬 (서울대학교 전기정보공학부)
  • Received : 2022.12.20
  • Accepted : 2023.01.25
  • Published : 2023.02.25

Abstract

In this study, we propose a hybrid phase-control algorithm for multi-channel coherent beam combining (CBC) system by combining the covariant matrix adaption evolution strategy (CMA-ES) and stochastic parallel gradient descent (SPGD) algorithms and analyze its operational performance. The proposed hybrid CMA-ES/SPGD algorithm is a sequential process which initially runs the CMA-ES algorithm until the combined final output intensity reaches a preset interim value, and then switches to running the SPGD algorithm to the end of the whole process. For ideal 7-channel and 19-channel all-fiber-based CBC systems, we have found that the mean convergence time can be reduced by about 10% in comparison with the case when the SPGD algorithm is implemented alone. Furthermore, we analyzed a more realistic situation in which some additional phase noise was introduced in the same CBC system. As a result, it is shown that the proposed algorithm reduces the mean convergence time by about 17% for a 7-channel CBC system and 16-27% for a 19-channel system compared to the existing SPGD alone algorithm. We expect that for implementing a CBC system in a real outdoor environment where phase noise cannot be ignored, the hybrid CMA-ES/SPGD algorithm proposed in this study will be exploited very usefully.

본 연구에서는 다채널 결맞음 빔결합 시스템을 위한 위상제어 방식으로 covariant matrix adaption evolution strategy (CMA-ES) 알고리즘 및 stochastic parallel gradient descent (SPGD) 알고리즘을 결합한 이중 위상제어 알고리즘을 제안하고 그 동작 특성을 전산모사를 통해 분석한다. 제안하는 CMA-ES/SPGD 이중 위상제어 알고리즘은 결합된 최종 출력광 세기가 미리 설정된 특정값에 도달하기 전까지는 그 위상제어 최적화를 CMA-ES 알고리즘을 통해 진행하고, 그 이후에는 SPGD 알고리즘으로 전환하여 진행하는 순차적 이중 구조를 취한다. 이를 이상적인 7채널과 19채널 광섬유 결합기 기반 결맞음 빔결함 시스템에 적용하였을 때, 위상제어 최적화 평균 수렴시간이 기존의 SPGD 알고리즘만 단독적용한 경우에 비해 약 10% 단축됨을 확인하였다. 뿐만 아니라, 동일한 결맞음 빔결함 시스템에서 실제 환경과 유사하게 각 채널광에 위상잡음을 부가적으로 인가한 경우, 본 연구에서 제안하는 이중 위상제어 알고리즘을 적용할 경우 주어진 조건에서 그 평균 수렴시간이 기존의 SPGD 알고리즘만 단독적용한 경우에 비해 7채널 시스템의 경우 약 17%, 19채널 시스템의 경우 약 16-27% 정도 단축됨을 확인하였다. 본 연구에서 제안한 CMA-ES/SPGD 이중 위상제어 알고리즘은 향후 실제 대기 환경과 같이 위상잡음 효과를 무시할 수 없는 조건에서 결맞음 빔결합을 구현시 매우 유용하게 활용될 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문의 연구는 국방과학연구소(UD210019ID)의 지원으로 수행되었습니다.

References

  1. Y. Jeong, J. Sahu, D. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express 12, 6088-6092 (2004).  https://doi.org/10.1364/OPEX.12.006088
  2. D. J. Richardson, J. Nilsson, and W. A. Clarkson, "High power fiber lasers: current status and future perspectives," J. Opt. Soc. Am. B 27, B63-B92 (2010).  https://doi.org/10.1364/JOSAB.27.000B63
  3. A. V. Smith and J. J. Smith, "Mode instability in high power fiber amplifiers," Opt. Express 19, 10180-10192 (2011).  https://doi.org/10.1364/OE.19.010180
  4. V. I. Kovalev and R. G. Harrison, "Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers," Opt. Lett. 31, 161-163 (2006).  https://doi.org/10.1364/OL.31.000161
  5. J. Kim, P. Dupriez, C. Codemard, J. Nilsson, and J. K. Sahu, "Suppression of stimulated Raman scattering in a high power Yb-doped fiber amplifier using a W-type core with fundamental mode cut-off," Opt. Express 14, 5103-5113 (2006).  https://doi.org/10.1364/OE.14.005103
  6. J. W. Dawson, M. J. Messerly, R. J. Beach, M. Y. Shverdin, E. A. Stappaerts, A. K. Sridharan, P. H. Pax, J. E. Heebner, C. W. Siders, and C. P. J. Barty, "Analysis of the scalability of diffraction-limited fiber lasers and amplifiers to high average power," Opt. Express 16, 13240-13266 (2008).  https://doi.org/10.1364/OE.16.013240
  7. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, and D. N. Payne, "Multi-kilowatt single-mode ytterbium-doped largecore Fiber laser," J. Opt. Soc. Korea 13, 416-422 (2009).  https://doi.org/10.3807/JOSK.2009.13.4.416
  8. B. Yang, P. Wang, H. Zhang, X. Xi, C. Shi, X. Wang, and X. Xu, "6 kW single mode monolithic fiber laser enabled by effective mitigation of the transverse mode instability," Opt. Express 29, 26366-26374 (2021).  https://doi.org/10.1364/OE.433630
  9. T. Y. Fan, "Laser beam combining for high-power, high-radiance sources," IEEE J. Sel. Top. Quantum Electron. 11, 567- 577 (2005).  https://doi.org/10.1109/JSTQE.2005.850241
  10. M. N. Zervas and C. A. Codemard, "High power fiber lasers: A review," IEEE J. Sel. Top. Quant. Electron. 20, 219-241 (2014).  https://doi.org/10.1109/JSTQE.2014.2321279
  11. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high-power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019). 
  12. Y. Kwon, K. Park, D. Lee, H. Chang, S. Lee, L. A. VazquezZuniga, Y. S. Lee, D. H. Kim, H. T. Kim, and Y. Jeong, "Current status and prospects of high-power fiber laser technology," Korean J. Opt. Photonics 27, 1-17 (2016).  https://doi.org/10.3807/KJOP.2016.27.1.001
  13. C. Wirth, O. Schmidt, I. Tsybin, T. Schreiber, R. Eberhardt, J. Limpert, A. Tunnermann, K. Ludewigt, M. Gowin, E. ten Have, and M. Jung, "High average power spectral beam combining of four fiber amplifiers to 8.2 kW," Opt. Lett. 36, 3118- 3120 (2011).  https://doi.org/10.1364/OL.36.003118
  14. P. F. Ma, H. X. Chang, Y. X. Ma, R. T. Su, Y. F. Qi, J. Wu, C. Li, J. H. Long, W. C. Lai, Q. Chang, T. Y. Hou, P. Zhou, and J. Zhou, "7.1 kW coherent beam combining system based on a seven-channel fiber amplifier array," Opt. Laser Technol. 140, 107016 (2021). 
  15. T. M. Shay, "Theory of electronically phased coherent beam combination without a reference beam," Opt. Express 14, 12188-12195 (2006).  https://doi.org/10.1364/OE.14.012188
  16. P. Zhou, Z. J. Liu, X. L. Wang, Y. X. Ma, H. T. Ma, X. J. Xu, and S. F. Guo, "Coherent beam combining of fiber amplifiers using stochastic parallel gradient descent algorithm and its application," IEEE J. Sel. Top. Quantum Electron. 15, 248-256 (2009).  https://doi.org/10.1109/JSTQE.2008.2010231
  17. B. N. Pulford, "LOCSET phase locking: operation, diagnostics, and applications," M. S. Thesis, The University of New Mexico, New Mexico (2011). 
  18. T. M. Shay, V. Benham, J. T. Baker, A. D. Sanchez, D. Pilkington, and C. A. Lu, "Self-synchronous and self-referenced coherent beam combination for large optical arrays," IEEE J. Sel. Top. Quantum Electron. 13, 480-486 (2007).  https://doi.org/10.1109/JSTQE.2007.897173
  19. M. A. Vorontsov, T. Weyrauch, L. A. Beresnev, G. W. Carhart, L. Liu, and K. Aschenbach, "Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration," IEEE J. Sel. Top. Quantum Electron. 15, 269-280 (2009).  https://doi.org/10.1109/JSTQE.2008.2010875
  20. K. Choi, Y. C. Kim, Y. S. Yun, Y. C. Noh, and C. S. Jun, "Study on factors degrading the accuracy of real beam modal decomposition," Curr. Opt. Photonics 5, 93-100 (2021).  https://doi.org/10.3807/COPP.2021.5.2.093
  21. G. Q. Yang, L. S. Liu, Z. H. Jiang, T. F. Wang, and J. Guo, "Improved SPGD algorithm to avoid local extremum for incoherent beam combining," Opt. Commun. 382, 547-555 (2017).  https://doi.org/10.1016/j.optcom.2016.08.028
  22. M. Lu, H. Park, E. Bloch, A. Sivananthan, A. Bhardwaj, Z. Griffith, L. A. Johansson, M. J. Rodwell, and L. A. Coldren, "Highly integrated optical heterodyne phase-locked loop with phase/frequency detection," Opt. Express 20, 9736-9741 (2012).  https://doi.org/10.1364/OE.20.009736
  23. T. Y. Hou, Y. An, Q. Chang, P. F. Ma, J. Li, D. Zhi, L. J. Huang, R. T. Su, J. Wu, Y. X. Ma, and P. Zhou, "Deep-learning-based phase control method for tiled aperture coherent beam combining systems," High Power Laser Sci. Eng. 7, E59 (2019). 
  24. H. Kim and Y. Jeong, "Covariance matrix adaptation evolution strategy based optical phase control," Electron. Lett. 57, 517-519 (2021).  https://doi.org/10.1049/ell2.12174
  25. H. Z. Yang and X. Y. Li, "Comparison of several stochastic parallel optimization algorithms for adaptive optics system without a wavefront sensor," Opt. Laser Technol. 43, 630-635 (2011).  https://doi.org/10.1016/j.optlastec.2010.09.003
  26. N. Hansen and A. Ostermeier, "Completely derandomized selfadaptation in evolution strategies," Evol. Comput. 9, 159-195 (2001).  https://doi.org/10.1162/106365601750190398
  27. M. Bjorck, M. Henriksson, and L. Sjokvist, "Bandwidth and stability of the stochastic parallel gradient descent algorithm for phase control in coherent beam combination," Appl. Opt. 60, 4366-4374 (2021).  https://doi.org/10.1364/AO.422630
  28. R. Arsenault, A. Poulin, P. Cote, and F. Brissette, "Comparison of stochastic optimization algorithms in hydrological model calibration," J. Hydrol. Eng. 19, 1374-1384 (2014). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000938