• Title/Summary/Keyword: numerical modelling

Search Result 920, Processing Time 0.022 seconds

Sensitivity Analysis According to Fault Parameters for Probabilistic Tsunami Hazard Curves (단층 파라미터에 따른 확률론적 지진해일 재해곡선의 민감도 분석)

  • Jho, Myeong Hwan;Kim, Gun Hyeong;Yoon, Sung Bum
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.368-378
    • /
    • 2019
  • Logic trees for probabilistic tsunami hazard assessment include numerous variables to take various uncertainty on earthquake generation into consideration. Results from the hazard assessment vary in different way as more variables are considered in the logic tree. This study is conducted to estimate the effects of various scaling laws and fault parameters on tsunami hazard at the nearshore of Busan. Active fault parameters, such as strike angle, dip angle and asperity, are adjusted in the modelling of tsunami propagation, and the numerical results are used in the sensitivity analysis. The influence of strike angle to tsunami hazard is not as much significant as it is expected, instead, dip angle and asperity show a considerable impact to tsunami hazard assessment. It is shown that the dip angle and the asperity which determine the initial wave form are more important than the strike angle for the assessment of tsunami hazard in the East Sea.

Estimation of Conductivity Tensor of Fractured Rocks from Single-hole Packer test (단정 주입시험 결과를 이용한 단열암반의 수리전도도 분석)

  • 장근무;이은용;김창락;이찬구;김현주
    • The Journal of Engineering Geology
    • /
    • v.10 no.1
    • /
    • pp.13-25
    • /
    • 2000
  • A three-dimensional discrete fracture network model based on probabilistic characteristics of fracture geometry and transmissivity was designed to calculate the conductivity tensor and to estimate theanisotropy of conductivity. The conductivities, $K_p$, obtained from the numerical simulation of single-holepacker test corresponded well to those from the field tests. From this, it can be concluded that thefracture network model designed in this study can represent hydraulic characteristics of in-situ fractured rock mass. Block-scale conductivities, $K_b$, estimated from the modelling of steady-state flow through the REV-scale block were ranged between the arithmetic mean and harmonic mean of theconductivity estimates from packer tests. The conductivity along north-south direction was 1.4 timesgreater than that along the east-west direction. It was concluded that the anisotropy of conductivitywas insignificant. It was also found that there was a little correlation between $K_b$ and $K_p$. This would be to that the conductivities from the packer test simulation was strongly dependent on thetransmissivity and the number of fractures within the packer test intervals.

  • PDF

DEVELOPMENT AND VALIDATION OF LAND SURFACE TEMPERATURE RETRIEVAL ALGORITHM FROM MTSAT-1R DATA

  • Hong, Ki-Ok;Kang, Jeon-Ho;Suh, Myoung-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.293-296
    • /
    • 2008
  • Land surface Temperature (LST) is a very useful surface parameter for the wide range of applications, such as agriculture, numerical and climate modelling community. Whereas operational observation of LST is far from the needs of application community in the spatial Itemporal resolution and accuracy. So, we developed split-window type LST retrieval algorithm to estimate the LST from MTSAT-IR data. The coefficients of split-window algorithm were obtained by means of a statistical regression analysis from the radiative transfer simulations using MODTRAN 4 for wide range of atmospheric profiles, satellite zenith angle and lapse rate conditions including the surface inversions. The sensitivity analysis showed that the LST algorithm reproduces the LST with a reasonable quality. However, the LST algorithm overestimates and underestimates for the strong surface inversion and superadiabatic conditions especially for the warm temperature, respectively. And the performance of LST algorithms is superior when satellite zenith angle is small. The accuracy of the retrieved LST has been evaluated with the Moderate Resolution Imaging Spectroradiometer (MODIS) LST data. The validation results showed that the correlation coefficients and RMSE are about 0.83${\sim}$0.98 and 1.38${\sim}$4.06, respectively. And the quality of LST is significantly better during night and winter time than during day and summer. The validation results showed that the LST retrieval algorithm could be used for the operational retrieval of LST from MTSAT-IR and COMS(Communication, Ocean and Meteorological Satellite) data with some modifications.

  • PDF

Three dimensional modelling of ancient colonnade structural systems subjected to harmonic and seismic loading

  • Sarhosis, V.;Asteris, P.G.;Mohebkhah, A.;Xiao, J.;Wang, T.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.4
    • /
    • pp.633-653
    • /
    • 2016
  • One of the major threats to the stability of classical columns and colonnades are earthquakes. The behavior of columns under high seismic excitation loads is non-linear and complex since rocking, wobbling and sliding failure modes can occur. Therefore, three dimensional simulation approaches are essential to investigate the in-plane and out-of-plane response of such structures during harmonic and seismic loading excitations. Using a software based on the Distinct Element Method (DEM) of analysis, a three dimensional numerical study has been performed to investigate the parameters affecting the seismic behaviour of colonnades' structural systems. A typical section of the two-storey colonnade of the Forum in Pompeii has been modelled and studied parametrically, in order to identify the main factors affecting the stability and to improve our understanding of the earthquake behaviour of such structures. The model is then used to compare the results between 2D and 3D simulations emphasizing the different response for the selected earthquake records. From the results analysis, it was found that the high-frequency motion requires large base acceleration amplitude to lead to the collapse of the colonnade in a shear-slip mode between the drums. However, low-frequency harmonic excitations are more prominent to cause structural collapse of the two-storey colonnade than the high-frequency ones with predominant rocking failure mode. Finally, the 2D analysis found to be unconservative since underestimates the displacement demands of the colonnade system when compared with the 3D analysis.

An experimental and numerical study on temperature gradient and thermal stress of CFST truss girders under solar radiation

  • Peng, Guihan;Nakamura, Shozo;Zhu, Xinqun;Wu, Qingxiong;Wang, Hailiang
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.605-616
    • /
    • 2017
  • Concrete filled steel tubular (CFST) composite girder is a new type of structures for bridge constructions. The existing design codes cannot be used to predict the thermal stress in the CFST truss girder structures under solar radiation. This study is to develop the temperature gradient curves for predicting thermal stress of the structure based on field and laboratory monitoring data. An in-field testing had been carried out on Ganhaizi Bridge for over two months. Thermal couples were installed at the cross section of the CFST truss girder and the continuous data was collected every 30 minutes. A typical temperature gradient mode was then extracted by comparing temperature distributions at different times. To further verify the temperature gradient mode and investigate the evolution of temperature fields, an outdoor experiment was conducted on a 1:8 scale bridge model, which was installed with both thermal couples and strain gauges. The main factors including solar radiation and ambient temperature on the different positions were studied. Laboratory results were consistent with that from the in-field data and temperature gradient curves were obtained from the in-field and laboratory data. The relationship between the strain difference at top and bottom surfaces of the concrete deck and its corresponding temperature change was also obtained and a method based on curve fitting was proposed to predict the thermal strain under elevated temperature. The thermal stress model for CFST composite girder was derived. By the proposed model, the thermal stress was obtained from the temperature gradient curves. The results using the proposed model were agreed well with that by finite element modelling.

A Study on Adopting Active Suspension Control in Sky Hook System (스카이훅 시스템에의 능동 서스펜션 제어 이론 적용에 관한 연구)

  • Park Jung-Hyen;Jang Seung-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.5
    • /
    • pp.950-955
    • /
    • 2006
  • This paper prosed modelling and design method in suspension system sesign to analyze sky hook damper system by adopting active suspension control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is hon that sky hook suspension system is better than passive spring-damper system in designing suspension equipment. We analyze location of damper in sky hook system and its motion equation then design robust control system. Numerical example is shown for validity of robust control system design in active sky hook suspension system.

Numerical Modelling on the Strength of Reinforced Concrete Simple-Continuous Deep Beams with Openings by an Upper-Bound Theorem (상계치 이론을 이용한 개구부를 갖는 철근콘크리트 단순·연속 깊은 보 내력의 수치해석 모델)

  • Yang, Keun-Hyeok;Eun, Hee-Chang;Chung, Heon-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.469-477
    • /
    • 2006
  • Models to predict the ultimate strength of simply supported or continuous deep beams with web openings are proposed. The derived equations are based on upper-bound theorem. The concrete is assumed as a perfectly plastic material obeying the modified Coulomb failure criteria with zero tension cutoff. Reinforcing bar is considered as elastic-perfectly plastic material and its stress is calculated from the limiting principal compressive strain of concrete. The governing failure mechanisms based on test results are idealized as rigid moving blocks separated by a hyperbolic yield line. The effective compressive strength of concrete is calculated from the formula proposed by Vecchio and Collins. Comparisons with existing test results are performed, and they show good agreement.

An Assessment of the Excavation Damaged Zone in the KAERI Underground Research Tunnel (원자력연구원 내 지하처분연구시설의 암반 손상대 발생영향 분석)

  • Kim, Jin-Seop;Kwon, Sang-Ki;Cho, Won-Jin
    • Explosives and Blasting
    • /
    • v.27 no.1
    • /
    • pp.21-31
    • /
    • 2009
  • An excavation damaged zone (EDZ) is created by fracturing, excavation or stress redistribution of tunnels. In this zone the mechanical and hydraulic properties of rock are changed, which makes additional cracks and serves as a dominant pathway of groundwater flow. In this study, an assessment on an EDZ size was practiced by the measurement of the deformation modulus at the KAERI underground research tunnel (KURT), and the information was applied to the modelling analysis using FLAC2D software. The EDZ at KURT fell into the range of 0.6~1.8m and the deformation moduli of the EDZ generally correspond to about 40% of intact rock mass. With a consideration of the EDZ in numerical analysis, tunnel displacements increased by about 65% and the maximum principal stress decreased to 58% from the case without EDZ. The plastic zone of the tunnel was enlarged to the crown and invert zones of the tunnel within the range of the length of rock bolts. About 2% of the total tunnel displacement with EDZ was suppressed by the KURT support system. It is anticipated that the investigation of an EDZ can be used as an important and fundamental research for validating the overall performance of a high level waste disposal system.

A Numerical Study on Shear Behavior of the Interface between Blasted Rock and Concrete (발파 암반-콘크리트 경계면에서의 전단거동특성에 대한 수치해석적 연구)

  • Min, Gyeong-Jo;Ko, Young-Hun;Fukuda, Daisuke;Oh, Se-Wook;Kim, Jeong-Gyu;Chung, Moon-Kyung;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.37 no.4
    • /
    • pp.26-35
    • /
    • 2019
  • In designing a gravity-type anchorage of earth-anchored suspension bridge, the contact friction between a blasted rock mass and the concrete anchorage plays a key role in the stability of the entire anchorage. Therefore, it is vital to understand the shear behavior of the interface between the blasted rock mass and concrete. In this study, a portable 3D LiDAR scanner was utilized to scan the blasted bottom surfaces, and rock surface roughness was quantitatively analyzed from the scanned profiles to apply to 3D FEM modelling. In addition, based on the 3D FEM model, a three-dimensional dynamic fracture process analysis (DFPA-3D) technique was applied to study on the shear behavior of the interface between blasted rock and concrete through direct shear tests, which was analyzed under constant normal load (CNL). The effects of normal stress and the joint roughness on shear failure behavior are also analyzed.

A Study on Active Suspension Control System in Vehicle Bouncing and Pitching Vibration for Improving Ride Comfort (승차감 향상을 위한 차체 상하.피칭 능동 현가제어에 관한 연구)

  • Park, Jung-Hyen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.2 s.46
    • /
    • pp.325-331
    • /
    • 2007
  • This paper proposed modelling and design method in suspension system design to analyze active suspension equipment by adopting active robust control theory. Recent in the field of suspension system design it is general to adopt active control scheme for stiffness and damping, and connection with other vehicle stability control equipment is also intricate, it is required for control system scheme to design more robust, higher response and precision control equipment. It is known that active suspension system is better than passive spring-damper system in designing suspension equipment. We analyze suspension system with considering location of front-rear wheel and driving velocity, then design control system. Numerical example is shown for validity of robust control system design in active suspension system.

  • PDF