• Title/Summary/Keyword: numerical methods

Search Result 5,270, Processing Time 0.038 seconds

Numerical Investigation of Low-pollution Combustion with applying Flue Gas Recirculation in Counterflow Flames: Part I. Combustion Characteristics of Low NOx (대향류 화염에서 FGR이 적용된 저공해 연소의 수치적 해석: Part I. 저 NOx 연소특성)

  • Cho, Seo-Hee;Lee, Kee-Man
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.6
    • /
    • pp.8-16
    • /
    • 2019
  • One of the methods for low-pollution combustion, flue gas recirculation(FGR) is effective to reduce nitrogen oxides and it was applied in CH4/air premixed counterflow flames to identify the change of flame characteristics and NOx mechanisms. Considering that the mole fraction of the products varied depending on the strain rates, the major products: CO2, H2O, O2 and N2 were recirculated as a diluent to reflect the actual combustion system. With the application of the FGR technique, a turning point of maximum flame temperature under certain strain rate condition was found. Furthermore as the recirculation ratio increased, the tendency of NO was changed before and after the turning point and the analysis on thermal NO and Fenimore NO production was conducted.

Optimal Design of Permanent Magnetic Actuator for Permanent Magnet Reduction and Dynamic Characteristic Improvement using Response Surface Methodology

  • Ahn, Hyun-Mo;Chung, Tae-Kyung;Oh, Yeon-Ho;Song, Ki-Dong;Kim, Young-Il;Kho, Heung-Ryeol;Choi, Myeong-Seob;Hahn, Sung-Chin
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.935-943
    • /
    • 2015
  • Permanent magnetic actuators (P.M.A.s) are widely used to drive medium-voltage-class vacuum circuit breakers (V.C.B.s). In this paper, a method for design optimization of a P.M.A. for V.C.B.s is discussed. An optimal design process employing the response surface method (R.S.M.) is proposed. In order to calculate electromagnetic and mechanical dynamic characteristics, an initial P.M.A. model is subjected to numerical analysis using finite element analysis (F.E.A.), which is validated by comparing the calculated dynamic characteristics of the initial P.M.A. model with no-load test results. Using tables of mixed orthogonal arrays and the R.S.M., the initial P.M.A. model is optimized to minimize the weight of the permanent magnet (P.M.) and to improve the dynamic characteristics. Finally, the dynamic characteristics of the optimally designed P.M.A. are compared to those of the initially designed P.M.A.

A Numerical Study on Coughed Particle Dispersion and Deposition in Negative Pressure Isolation Room according to Particle Size (음압격리병실에서의 기침 토출입자의 입경에 따른 확산 및 침적에 대한 수치해석 연구)

  • Jung, Minji;Hong, Jin Kwan
    • Journal of The Korea Institute of Healthcare Architecture
    • /
    • v.24 no.2
    • /
    • pp.37-44
    • /
    • 2018
  • Purpose: This study investigates the influences of coughing direction and healthcare worker's location on the transport characteristics of coughed particles in airborne infection isolation room (AIIR), which is commonly called negative pressure isolation room, with a downward ventilation system. Methods: Computational Fluid Dynamics (CFD) was used to simulate the airflow and for tracing the behavior of particles. Results: The results show that the airflow pattern and coughing direction have a significant influence on the characteristics of particle dispersion and deposition. When healthcare workers are in the isolation room with the patient who is lying on the bed, it is recommended to be located far from the anteroom to reduce the exposures from infectious particles. And when the patient is lying, it is more effective in removing particles than when the patient is in Fowler's position. Although it is an isolation room that produces unidirectional flow, coughing particles can spread to the whole room and a large number of particles can be deposited onto patient, bed, side rails, healthcare worker, ceiling, floor, and sidewall. Implications: Following the patients' discharge or transfer, terminal cleaning of the vacated room, furniture, and all clinical equipment is essential. Also, it is necessary to establish detailed standard operating procedure (SOP) in order to reduce the risk of cross-contamination.

Experimental verification for prediction method of anomaly ahead of tunnel face by using electrical resistivity tomography

  • Lee, Kang-Hyun;Park, Jin-Ho;Park, Jeongjun;Lee, In-Mo;Lee, Seok-Won
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.475-484
    • /
    • 2020
  • The prediction of the ground conditions ahead of a tunnel face is very important, especially for tunnel boring machine (TBM) tunneling, because encountering unexpected anomalies during tunnel excavation can cause a considerable loss of time and money. Several prediction techniques, such as BEAM, TSP, and GPR, have been suggested. However, these methods have various shortcomings, such as low accuracy and low resolution. Most studies on electrical resistivity tomography surveys have been conducted using numerical simulation programs, but laboratory experiments were just a few. Furthermore, most studies of scaled model tests on electrical resistivity tomography were conducted only on the ground surface, which is a different environment as compared to that of mechanized tunneling. This study performed a laboratory experimental test to extend and verify a prediction method proposed by Lee et al., which used electrical resistivity tomography to predict the ground conditions ahead of a tunnel face in TBM tunneling environments. The results showed that the modified dipole-dipole array is better than the other arrays in terms of predicting the location and shape of the anomalies ahead of the tunnel face. Having longer upper and lower borehole lengths led to better accuracy of the survey. However, the number and length of boreholes should be properly controlled according to the field environments in practice. Finally, a modified and verified technique to predict the ground conditions ahead of a tunnel face during TBM tunneling is proposed.

Effect of Bandwidth of Random Stresses on Fatigue Life Estimations of Offshore Structures (해양구조물의 피로해석시 랜덤응력의 Bandwidth의 영향)

  • Ryu, Jeong Soo;Yun, Chung Bang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.85-91
    • /
    • 1986
  • Fatigue life is an important consideration for the design of offshore structures in deep sea and in hostile environments. In this paper, the effect of the bandwidth of random stresses on the fatigue life estimation of fixed offshore structures is investigated. The dynamic analysis is carried out in the frequency domain by using the equivalent linearization technique. Fatigue damages are calculated by two stress cycle counting methods; i.e., the narrow band method and the wide band method using rainflow counting technique. Example studies are carried out for two different structures. Numerical results indicate that the wide band approach, which is more complex but theoretically more appropriate pridicts smaller values of fatigue damages compared with those by the narrow band approach for all seastate conditions. Such trend becomes more apparent for the cases of severe seastates where the bandwidth of random stresses becomes large.

  • PDF

Shape Optimization of Plane Truss Structures (평면(平面)트러스 구조물(構造物)의 형상최적화(形狀最適化))

  • Kim, Soung Wan;Lee, Gyu Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.6 no.2
    • /
    • pp.1-15
    • /
    • 1986
  • The algorithm Proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton-Rahson method. In the second level, the geometric shape is optimized utilizing the unindirectional search technique of the Powell method which make it possible to minimize only the objective function. The algorithm Proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two-Levels algorithm Proposed in this study is safely applicable to any design criteria, and the convergency rate is relathely fast and stable compared with other iteration methods for the geometric optimization of truss structures.

  • PDF

A Case Report of Spine Decompression including Korean Medical treatments on Post-operative State of Cervical Spine (경추 유합술 이후 발생한 인접분절 추간판 탈출증 환자에 대한 감압요법을 포함한 한의학적 치료 증례보고)

  • Lee, Ji-Yun;Shin, Won-Bin;Lim, Su-Yeon;Moon, Young-Joo;Jeon, Hyun-A;Nam, Hang-woo
    • The Journal of Churna Manual Medicine for Spine and Nerves
    • /
    • v.14 no.2
    • /
    • pp.113-122
    • /
    • 2019
  • Objectives : The purpose of this clinical study was to evaluate the effect of spinal decompression with Korean medicine treatment on the herniation of an intervertebral disc (HIVD) in a patient after fusion surgery of a cervical segment. Methods : A single patient was treated with spinal decompression, acupuncture, pharmacoacupuncture, and herbal medication. We measured the Numerical Rating Scale (NRS), Neck Disability Index (NDI), European Quality of Life-5 Dimension (EQ-5D), Cervical Range of Motion (cervical ROM) and the Beck Depression Inventory (BDI) score to evaluate the treatment effects. Results : The patient's post neck pain & pain in both arms improved significantly as suggested by the scores on the NRS, NDI, EQ5D, cervical ROM and BDI. Conclusions : Thus, spinal decompression, including Korean medicine treatment, could be taken into consideration for HIVD patients after fusion surgery.

Development of an Inverse Method Using Orthogonal Basis Functions for the Evaluation of Boundary Tractions on an Elastic Body (탄성체 경계 트랙션을 구하는 문제에서 상호 수직 기저 함수를 사용한 역문제 해석 방법의 개발)

  • Kim, Sa-Young;Kim, Hyun-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.487-493
    • /
    • 2010
  • Most structural analyses are concerned with the deformations and stresses in a body subjected to external loads. However, in many fields, inverse problems have to be interpreted to determine surface tractions or internal stresses from displacements measured on a remote surface. In this study, the inverse processes are studied by using the finite element method for the evaluation of internal stresses. Small errors in the measured displacements often result in a substantial loss of stability of an inverse system. In order to improve the stability of the inverse system, the displacements on a section near the region of the unknown tractions are predicted by using orthogonal basis functions. We use the Gram-Schmidt orthogonal technique to determine two bases for the displacements on a section near the region of the unknown tractions. Advantages over previous methods are discussed by using numerical examples.

A numerical study on the safety of tunnel face using face bolting method (페이스 볼트 공법을 이용한 터널 막장 안정성에 관한 수치해석적 연구)

  • Ra, Jee-Hyun;Yoon, Ji-Sun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • As tunnel excavation generats stress release, a stability security of tunnel face is mainly important in case of tunnel excavation in the weak grounds. Using the steel bar or glass fiber pipe which had regular hardness, a face bolt method to reinforce previously is applied to an excavation object tunnel face aspect among measures methods regarding this. Therefore, used $FLAC^{3D}$ Ver. 2.1 on 5 Case of 0.5D (2EA), 1.0D, 1.5D, 2.0D with the length and 6 Case of 0, 20, 40, 60, 80, 100EA with the number of the bolt that a face bolt method was installed at these papers in the necessary weak grounds in order to review applicability of the tunnel face reinforcement method that used these face bolts, and executed three dimension continuous analysis.

  • PDF

Shock absorption of concrete liquid storage tank with different kinds of isolation measures

  • Jing, Wei;Chen, Peng;Song, Yu
    • Earthquakes and Structures
    • /
    • v.18 no.4
    • /
    • pp.467-480
    • /
    • 2020
  • Concrete rectangular liquid storage tanks are widely used, but there are many cases of damage in previous earthquakes. Nonlinear fluid-structure interaction (FSI) is considered, Mooney-Rivlin material is used for rubber bearing, nonlinear contact is used for sliding bearing, numerical calculation models of no-isolation, rubber isolation, sliding isolation and hybrid isolation concrete rectangular liquid storage tanks are established; dynamic responses of different structures are compared to verify the effectiveness of isolation methods; and influences of earthquake amplitude, bidirectional earthquake and far-field long-period earthquake on dynamic responses are investigated. Results show that for liquid sloshing wave height, rubber isolation cause amplification effect, while sliding isolation and hybrid isolation have reduction effect; displacement of rubber isolation structure is much larger than that of sliding isolation with limiting-devices and hybrid isolation structure; when PGA is larger, wall cracking probability of no-isolation structure becomes larger, and probability of liquid sloshing wave height and structure displacement of rubber isolation structure exceeds the limit is also larger; under bidirectional earthquake, occurrence probabilities that liquid sloshing wave height and structure displacement of rubber isolation structure exceed the limit will be increased; besides, far-field long-period earthquake mainly influences structure displacement and liquid sloshing wave height. On the whole, control effect of sliding isolation is the best, followed by hybrid isolation, and rubber isolation is the worst.