• Title/Summary/Keyword: numerical inversion

Search Result 293, Processing Time 0.029 seconds

A New Inverse Scattering Scheme Using the Moment Method, II: Noise Effect (모멘트방법을 이용한 새로운 역산란 계산방법, II : 잡음의 영향)

  • 김세윤;윤태훈;라정웅
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.3
    • /
    • pp.252-261
    • /
    • 1988
  • Employed the new invese scattering scheme based on the moment mehtod, which was presented in the Part I of these companion papers, numerical simulations are performed to investigate the effect of measurement errors and noise contaminating the field scattered from dielectric objects. In order to reduce those effects on the reconstructed permittivity profiles, some techniques such as regularization, iterative matrix inversion, and multiple incidence are applied to this problem.

  • PDF

The mixed finite element for quasi-static and dynamic analysis of viscoelastic circular beams

  • Kadioglu, Fethi;Akoz, A. Yalcin
    • Structural Engineering and Mechanics
    • /
    • v.15 no.6
    • /
    • pp.735-752
    • /
    • 2003
  • The quasi-static and dynamic responses of a linear viscoelastic circular beam on Winkler foundation are studied numerically by using the mixed finite element method in transformed Laplace-Carson space. This element VCR12 has 12 independent variables. The solution is obtained in transformed space and Schapery, Dubner, Durbin and Maximum Degree of Precision (MDOP) transform techniques are employed for numerical inversion. The performance of the method is presented by several quasi-static and dynamic example problems.

Tail Probability Approximations for the Ratio of two Independent Sequences of Random Variables

  • Cho, Dae-Hyeon
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.2
    • /
    • pp.415-428
    • /
    • 1999
  • In this paper, we study the saddlepoint approximations for the ratio of two independent sequences of random variables. In Section 2, we review the saddlepoint approximation to the probability density function. In section 3, we derive an saddlepoint approximation formular for the tail probability by following Daniels'(1987) method. In Section 4, we represent a numerical example which shows that the errors are small even for small sample size.

  • PDF

Transient Analysis of Hybrid Systems Composed of Lumped Elements and Frequency Dependent Lossy Disributed Interconnects

  • Ichikawa, Satoshi;Shimoda, Tomokazu
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.1096-1099
    • /
    • 2000
  • A method to analyze the high speed inter-connects that are composed of frequency dependent lossy distributed lines is presented. Network modeling of hybrid systems is implemented by using the modified nodal admittance matrix in the Laplace transformation domain. The network response is computed by different two methods. One method Is the asymptotic waveform evaluation (AWE) method and other is numerical Laplace inversion method. The merits and demerits of two methods are discussed by applying to several concrete illustrative networks.

  • PDF

Effect of time harmonic sources on transversely isotropic thermoelastic thin circular plate

  • Lata, Parveen;Kaur, Iqbal
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • The present research deals with the deformation in transversely isotropic thin circular thermoelastic rotating plate due to time-harmonic sources. Frequency effect in the presence of rotation and two temperature is studied under thermally insulated as well as isothermal boundaries. The Hankel transform technique is used to find a solution to the problem. The displacement components, stress components, and conductive temperature distribution with the radial distance are computed in the transformed domain and further calculated in the physical domain using numerical inversion techniques. Some specific cases are also figured out from the current research.

Three-dimensional anisotropic inversion of resistivity tomography data in an abandoned mine area (폐광지역에서의 3차원 이방성 전기비저항 토모그래피 영상화)

  • Yi, Myeong-Jong;Kim, Jung-Ho;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.7-17
    • /
    • 2011
  • We have developed an inversion code for three-dimensional (3D) resistivity tomography including the anisotropy effect. The algorithm is based on the finite element approximations for the forward modelling and Active Constraint Balancing method is adopted to enhance the resolving power of the smoothness constraint least-squares inversion. Using numerical experiments, we have shown that anisotropic inversion is viable to get an accurate image of the subsurface when the subsurface shows strong electrical anisotropy. Moreover, anisotropy can be used as additional information in the interpretation of subsurface. This algorithm was also applied to the field dataset acquired in the abandoned old mine area, where a high-rise apartment block has been built up over a mining tunnel. The main purpose of the investigation was to evaluate the safety analysis of the building due to old mining activities. Strong electrical anisotropy has been observed and it was proven to be caused by geological setting of the site. To handle the anisotropy problem, field data were inverted by a 3D anisotropic tomography algorithm and we could obtain 3D subsurface images, which matches well with geology mapping observations. The inversion results have been used to provide the subsurface model for the safety analysis in rock engineering and we could assure the residents that the apartment has no problem in its safety after the completion of investigation works.

Numerical Test for the 2D Q Tomography Inversion Based on the Stochastic Ground-motion Model (추계학적 지진동모델에 기반한 2D Q 토모그래피 수치모델 역산)

  • Yun, Kwan-Hee;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.3
    • /
    • pp.191-202
    • /
    • 2007
  • To identify the detailed attenuation structure in the southern Korean Peninsula, a numerical test was conducted for the Q tomography inversion to be applied to the accumulated dataset until 2005. In particular, the stochastic pointsource ground-motion model (STGM model; Boore, 2003) was adopted for the 2D Q tomography inversion for direct application to simulating the strong ground-motion. Simultaneous inversion of the STGM model parameters with a regional single Q model was performed to evaluate the source and site effects which were necessary to generate an artificial dataset for the numerical test. The artificial dataset consists of simulated Fourier spectra that resemble the real data in the magnitude-distance-frequency-error distribution except replacement of the regional single Q model with a checkerboard type of high and low values of laterally varying Q models. The total number of Q blocks used for the checkerboard test was 75 (grid size of $35{\times}44km^2$ for Q blocks); Q functional form of $Q_0f^{\eta}$ ($Q_0$=100 or 500, 0.0 < ${\eta}$ < 1.0) was assigned to each Q block for the checkerboard test. The checkerboard test has been implemented in three steps. At the first step, the initial values of Q-values for 75 blocks were estimated. At the second step, the site amplification function was estimated by using the initial guess of A(f) which is the mean site amplification functions (Yun and Suh, 2007) for the site class. The last step is to invert the tomographic Q-values of 75 blocks based on the results of the first and second steps. As a result of the checkerboard test, it was demonstrated that Q-values could be robustly estimated by using the 2D Q tomography inversion method even in the presence of perturbed source and site effects from the true input model.

3-Dimensional Numerical Analysis of Deep Depletion Buried Channel MOSFETs and CCDs

  • Kim Man-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.3
    • /
    • pp.396-405
    • /
    • 2006
  • The visual analysis of buried channel (Be) devices such as buried channel MOSFETs and CCDs (Charge Coupled Devices) is investigated to give better understanding and insight for their electrical behaviours using a 3-dimensional (3-D) numerical simulation. This paper clearly demonstrates the capability of the numerical simulation of 'EVEREST' for characterising the analysis of a depletion mode MOSFET and BC CCD, which is a simulation software package of the semiconductor device. The inverse threshold and punch-through voltages obtained from the simulations showed an excellent agreement with those from the measurement involving errors of within approximately 1.8% and 6%, respectively, leading to the channel implanted doping profile of only approximately $4{\sim}5%$ error. For simulation of a buried channel CCD an advanced adaptive discretising technique was used to provide more accurate analysis for the potential barrier height between two channels and depletion depth of a deep depletion CCD, thereby reducing the CPU running time and computer storage requirements. The simulated result for the depletion depth also showed good agreement with the measurement. Thus, the results obtained from this simulation can be employed as the input data of a circuit simulator.

Laboratory Experimentals and Numerical Analysis for Development of a Atmospheric Mixed Layer (대기 혼합층 발달 과정의 모형 실험과 수치 해석)

  • 이화운
    • Journal of Environmental Science International
    • /
    • v.2 no.1
    • /
    • pp.17-26
    • /
    • 1993
  • The layer that is directly influenced by ground surface is called the atmospheric boutsdary layer in comparison with the free atmosphere of higher layer. In the boundary layer, the changes of wind, temperature and coefficient of turbulent diffusion in altitude are large and have great influences an atmospheric diffusion. The purpose of this paper is to express the structure and characteristics of development of mixed layer by using laboratory experiment and numerical simulation. Laboratory experiment using water tank are performed that closely simulate the process of break up of nocturnal surface inversion above heated surface and its phenomena are analyzed by the use of horizontally averaged temperature which is observed. The result obtained from the laboratory experiment is compared with theoretical ones from ; \textsc{k}-\varepsilon numerical model. The results are summarized as follows. 1) The horizontally averaged temperature was found to vary smoothly with height and the mixed layer developed obviously being affected by the convection. 2) The mean height of mixed layer may be predicted as a function of time, knowing the mean initial temperature gradient. The experimental values are associated well with the theoretical values computed for value of the universal constant $C_r$= 0.16, our $C_r$ value is little smaller than the value found by Townsend and Deardoru et al.

  • PDF

Compensation for the Distorted Signals in WDM System with Non Zero-Dispersion Shifted Fiber Using Optical Phase Conjugator (비영 분산 천이 광섬유를 갖는 WDM 시스템에서 광 위상 공액기에 의한 왜곡된 광 신호의 보상)

  • Lee Seong-Real
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.546-555
    • /
    • 2006
  • In this paper, the numerical methods of finding the optimal position of optical phase conjugator(OPC) and the optimal fiber dispersions are proposed, which are able to effectively compensate overall channels in $8{\times}40$ Gbps WDM system with non zero-dispersion shifted fiber(NZ-DSF) as an optical fiber. And the compensation characteristics in the system with two induced optimal parameters are compared with those in the system with mid-span spectral inversion (MSSI) technique in order to confirm the availability of the proposed methods. It is confirmed that the optimal parameter values induced in this approach are very useful to effectively compensate overall channels in WDM system with OPC. And, it is confirmed that two optimal parameters depend on each other, but less related with the searching procedure. The methods proposed in this research will be expected to alternate with the method of making a symmetrical distribution of power and local dispersion in real optical link which is a serious problem of applying the OPC into multi-channels WDM system.