• Title/Summary/Keyword: numerical evaluation

Search Result 2,609, Processing Time 0.032 seconds

A Numerical Study on the Performance Evaluation of the Vacuum Pump for Waste Treatment (수치해석을 이용한 오물 처리용 진공펌프의 성능평가)

  • Lee, Him-Chan;Kim, Joon-Hyung;Yoon, Joon-Yong;Kim, Chang-Jo;Choi, Young-Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.53-58
    • /
    • 2014
  • Vacuum pump transfers waste that is pulverized by integrated macerator. For this reason, unlike ordinary pump systems, there is a rotating macerator ahead of impeller for pulverizing. It is hard to predict numerical solution because area of Inlet flow path changes according to the rotation angle of the integrated macerator. So, in this study, the verification of performance evaluation method of Marine vacuum pump were numerically studied by commercial ANSYS CFX 13.0 software. We select a model of performance evaluation for study, and we analyze change of inlet flow path of integrated macerator according to rotation angle. We generate 5 model sets according to rotation angle of the integrated macerator. And we evaluate their performance by numerical analysis. Then, we analyze internal flow field and performance according to rotation angle of the integrated macerator based on numerical analysis result. In addition, we compared with experimental data for validity of numerical result by using steady state analysis.

A Study on Applicability of Numerical Analyses for Stress Wave-Based NDE Techniques (응력파를 이용한 비파괴 탐상기법의 수치해석 적용성에 관한 연구)

  • 이영준;이종세
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.504-512
    • /
    • 2003
  • Simulation programs have been developed and used as an attempt to improve the accuracy of Non-Destructive Evaluation(NDE) techniques. The applicability of these programs is very limited, however, because it is difficult to describe the delicacy of the propagation of stress waves. To investigate the applicability of the finite element analysis for stress wave-based NDE techniques numerical simulation for Impact-Echo method and SASW method is performed. The numerical studies are performed to determine the essential parameters such as contact time of impact load, mesh size and time step size. These studies show that the choice of parameter is very important for improving the accuracy and confidence of the numerical procedure and, thereby, the applicability of the numerical analysis for stress wave-based NDE techniques

  • PDF

A new decision method for construction scheme of shallow buried subway station

  • Qiu, Daohong;Yu, Yuehao;Xue, Yiguo;Su, Maoxin;Zhou, Binghua;Gong, Huimin;Bai, Chenghao;Fu, Kang
    • Geomechanics and Engineering
    • /
    • v.30 no.3
    • /
    • pp.313-324
    • /
    • 2022
  • With the development of the economy, people's utilization of underground space are also improved, and a large number of cities have begun to build subways to relieve traffic pressure. The choice of subway station construction method is crucial. If an inappropriate construction method is selected, it will not only waste costs but also cause excessive deformation that may also threaten construction safety. In this paper, a subway station construction scheme selects model based on the AHP-fuzzy comprehensive evaluation. The rationality of the model is verified using numerical simulation and monitoring measurement data. Firstly, considering the economy and safety, a comprehensive evaluation system is established by selecting several indicators. Then, the analytic hierarchy process is used to determine the weight of the evaluation index, and the dimensionless membership in the fuzzy comprehensive evaluation method is used to evaluate the advantages and disadvantages of the construction method. Finally, the method is applied to Liaoyang east road station of Qingdao metro Line 2, and the results are verified by numerical simulation and monitoring measurement data. The results show that the model is scientific, practical and applicable.

Bearing Performance Evaluation Based on Rigid Body Dynamic Analysis Considering Rotation and Loads Over Time (시간에 따른 회전 및 하중을 고려한 강체 동역학 해석에 기반한 베어링 성능 평가)

  • Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.39 no.2
    • /
    • pp.35-42
    • /
    • 2023
  • Bearing is a mechanical component that supports loads and transmits rotation. As the application of high-value-added products such as semiconductors, aviation, and robots have recently become diverse and more precise, an accurate bearing performance prediction and evaluation technology is required. Bearing performance evaluation can be divided into evaluations based on bearing theory and on numerical analysis. An evaluation based on numerical analysis is a technique that has been highlighted because the problems that remained unsolved owing to time problems can be solved through recent developments in computers. However, current studies have the disadvantage of not considering the essential changes over time and bearing rotation. In this study, bearing performance evaluation based on rigid body dynamic analysis considering rotation and load over time is performed. Rigid body dynamic analysis is performed for deep groove ball bearing to calculate the load applied by the ball. The reliability of the analysis is verified by comparing it with the results calculated using bearing theory. In addition, rigid body dynamic analysis is performed for automotive wheel bearings to calculate the contact angle and load applied by the ball for cases where axial load and radial load are applied, respectively. The effect of rotation and load over time is evaluated from these results.

A COMPUTATION METHOD IN PERFORMANCE EVALUATION IN CELLULAR COMMUNICATION NETWORK UNDER THE GENERAL DISTRIBUTION MODEL

  • Kim, Kyung-Sup
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.2
    • /
    • pp.119-131
    • /
    • 2008
  • The paper considers the computation method in the performance evaluation of cellular network in the phase-type distribution assumptions that the channel holding times induced from mobility are modeled by well-fitted distributions to reflect an actual situation. When ww consider a phase-type distribution model instead of exponential distribution, the complexity of the computation increase exponential even though the accuracy is improved. We consider an efficient numerical algorithm to compute the performance evaluations in cellular networks such as a handoff call dropping probability, new call blocking probability, and handoff arrival rate. Numerical experiment shows that numerical analysis results are well approximated to the results of simulation.

  • PDF

Numerical Evaluation of The Rayleigh Integral Using the FFT Method for Transient Sound Radiation (FFT 방법을 이용한 음압복사에 대한 Rayleigh Integral 의 수치해석적 연구)

  • Jeon, Jae-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.22-30
    • /
    • 1988
  • In this paper, the sound radiation from a clamped circular plate in an infinite baffle is calculated by using the FFT technique. The radiated sound fields are obtained by two-dimensional fast Fourier transform method is the spatial domain instead of a direct numerical evaluation of Rayleigh integral for economy of the computation time. The computation time is consumed at least by 1/200 times of the direct numerical evaluation on the Rayleigh integral in acoustic fields. The FFT method can be applicable to any shaped geometry as well as circular plate. The FFT solution could be very powerful in predicting the near and far fields of complex structures.

  • PDF

Morphological Change in Seabed Surrounding Jinwoo-Island Due to Construction of New Busan Port - Qualitative Evaluation through Numerical Simulation (부산신항 건설이 진우도 주변 해저지형 변화에 미치는 영향 - 수치실험을 통한 정성적 평가)

  • Hong, Namseeg
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.192-201
    • /
    • 2018
  • In this study, a qualitative evaluation of the morphological changes in the seabed surrounding Jinwoo-Island due to the construction of the new Busan port were determined through a numerical simulation. Various scenarios for the discharge of the Nakdong river estuary dam and construction stage of the new Busan port were established and utilized for an indirect and qualitative investigation through simulation using the numerical model implemented in this study. It was concluded through a qualitative study that the morphological changes in the seabed surrounding Jinwoo-Island were typical estuary seabed changes due to the discharge of the Nakdong river estuary dam and waves from the open sea. The effects from the construction of the new Busan port were relatively small.

Development of Low Carbon Hydrogen Production Technology Evaluation Model Using Delphi-AHP Method (Delphi-AHP 방법을 이용한 저탄소수소 생산 기술 가치평가 모델 개발)

  • HO SEOK WHANG;UISIK KIM;YOUNGSHIN JANG;JUNGHWAN KIM;KWANG JUN KIM
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.113-121
    • /
    • 2023
  • Recently, low hydrogen carbon production technology is drawing interest due to lower production costs. Although the pace of research in this field has been accelerating, there is no well-established criteria for evaluation. The most of current evaluation methods needs information related to technology. However the technology is not enough to provide effective evaluation criteria because the technology is not fully developed. In this study, we propose an integrated Delphi-analytic hierarchy process (AHP) method and low carbon hydrogen production technology evaluation model. Experts opinion is used to provide evaluation criteria for the technology. In this study, integrated Delphi-AHP method are utilized for determining factors and calculating their numerical importance based on experts opinion. Then, sensitivity analysis is performed to verify the robustness of the analysis and scenarios of potential changes. As many as 11 factors are identified by Delphi method. Then, numerical importance of the factors are calculated by AHP. Sensitivity analysis is performed. It shows that intellectual property right (IPR) is always more important than other factors. This study proposes the numerical standard for the low carbon hydrogen production technology evaluation. The proposed model can be used for technology evaluation or commercialization.

Pressure Drop in a Circular Pipe of Waste Collection Piping System (쓰레기 관로 이송 시스템의 관로 압력강하 평가)

  • Jang, Choon-Man;Lee, Sang-Yun;Suh, Sang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.4
    • /
    • pp.55-60
    • /
    • 2007
  • This paper describes an evaluation method of pressure drop in a circular pipe of waste collection piping system. Accurate pressure drop in a piping system is very important to determine the capacity of turbo blower, which is one of the main elements in the system. Three-dimensional Navier-Stokes analysis is introduced to analyze the pressure drop in the piping system. Organic waste is selected and modeled using the result of site survey performed in an apartment area. Evaluation method of pressure drop used In the present numerical simulation is performed in the shortened pipe line prior to the calculation of the real system. Throughout the numerical simulation, pressure drop in a waste pipe is obtained and compared to the value determined by analytical method. The pressure drop obtained by numerical simulation has a good agreement with that of the analytic method. It is noted that present evaluation method is effective to determine a pressure drop in the piping system. Detailed flow characteristics inside the pipe line are also analyzed and discussed.

Evaluation of Flowfield and Flow Losses insied Axial Turbomachinery Using Numerical Calculation [Evaluation of Tip Leakage Loss and Reduction of Efficiency by Tip Clearance] (수치계산에 의한 축류터보기계의 유동장과 유동온실의 평가 III [회전차 익말단의 누설손실과 효율저하에 대한 평가])

  • Ro, Soo-Hyuk;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.240-247
    • /
    • 1998
  • Leakage vortices formed near blade tip causes an increase of total pressure loss near casing endwall region and as a result, the efficiency of rotor decreases. The reduction of rotor efficiency is related to the size of tip clearance. In this study, the three-dimensional flowfields in an axial flow rotor were calculated with varying tip clearance under various flow rates, and the numerical results were compared with experimental ones. The effects of tip clearance and attack angle on the leakage vortex and overall performance, and the less distributions were investigated through numerical calculations. In this study, tip leakage flow rate and total pressure loss by tip clearance were evaluated using numerical results and aprroximate equations were presented to evaluate the reduction of rotor efficiency by tip leakage flow.

  • PDF