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ABSTRACT. The paper considers the computation method in the performance evaluation of
cellular network in the phase-type distribution assumptions that the channel holding times in-
duced from mobility are modeled by well-fitted distributions to reflect an actual situation. When
ww consider a phase-type distribution model instead of exponential distribution, the complexity
of the computation increase exponential even though the accuracy is improved. We consider
an efficient numerical algorithm to compute the performance evaluations in cellular networks
such as a handoff call dropping probability, new call blocking probability, and handoff arrival
rate. Numerical experiment shows that numerical analysis results are well approximated to the
results of simulation.

1. INTRODUCTION

We consider performance evaluation problems of the call admission control in cellular net-
works. Various handoff priority-based call admission control (CAC) schemes have been pro-
posed [1] [2]. A guard channel scheme proposed by Hong and Rappaport [3] is that a number
of channels in each cell are reserved for exclusive use by handoff calls and remaining channels
are shared by both new and handoff calls. In the queue priority scheme, when all channels
are occupied, either new calls are queued while handoff calls are dropped [4], or new calls are
dropped while handoff calls are queued [5] [6], or both calls are queued and rearranged [7]. In
this paper, a handoff prioritization strategy with guard channel and queue is considered.

We note that there are some rough approximations in cellular system modeling in the past
research literature. First, the channel holding times for new calls and handoff calls have been
assumed to be independent, exponentially distributed, and have the same average values [3] [8].
It is known that the distribution of the cell dwell time induced by user’s mobility should be mod-
eled by a general distribution in order to evaluate exactly the performance metrics. Orlik and
Rappaport proposed that the sum of exponential distributions (Hyper-exponential function) can
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be approximated to the dwell time distribution [9] [10]. Second, there are different classes of
telephone traffics with different qualities of service (QoS) in the modern communication net-
work. For examples, the new call and handoff call has different characteristics such as channel
holding times and cell dwell times [3] [8], and the real time traffic and non-real time traffics
have different QoSs. Therefore, we introduce multidimensional Markov model to handle the
multi-class traffics. However, if we assume more general model and increase the dimension in
order to get more exact solutions, then the complexity of computation increase exponentially.
We handle the numerical computation problems in computing performance evaluations in the
call admission control of cellular networks

In this paper, we develop a numerical algorithm computing a performance of a CAC using a
channel reservation and handoff queueing, when there are different mobility patterns of users.
We note that the mobility of wireless users impacts the performance, such as the blocking
probability and the mean of delay. Thus, more realistic analytical model of the mobility and
service rate is needed. General distribution model has computation complexity problems due to
the exponential increase of dimension. Thus we propose a novel numerical method to compute
the performance values of the CAC as the values for a handoff call dropping probability, new
call blocking probability, and handoff arrival rate, when new call arrival rates are known.

The remainder of this paper is structured as follows. In section 2, we consider a model
of mobility, and the computation method for the M/Ph/C/K queueing model. The matrix
solution of the analytical model for Channel guard scheme with handoff buffer is presented
and the numerical algorithm is discussed in section 3. In Section 4, the numerical results of the
analytical model are verified by some numerical examples. Finally, conclusions are drawn.

2. TRAFFIC MODEL IN MOBILE NETWORKS

2.1. Mobility Modeling. The probability that a new call is blocked is denoted by new call
blocking probability (CBP)(Pnb) and the probability that a handoff call is dropped is denoted
by Handoff Call Dropping Probability (CDP) (Phd). These quantities are most significant QoS
metrics in CAC scheme. When new calls and handoff calls are competing for the usage of a
finite channel resource in a cell, their claims for QoS are different. From users’ point of view,
a call forced to terminate during service is more annoying than the new call blocked at its start.
Therefore, handoff calls are commonly given a higher priority in accessing the wireless chan-
nel. This can be realized by handoff priority-based Call Admission Control (CAC) Schemes.
We note that the mobility patterns of mobile user such as slow or fast speed influence to the
QoS in wireless networks. The mobility plays an important role in the performance of a cellular
networks.

Let λn be the arrival rate for new calls and λh be the arrival rate for handoff call. λh depends
on λn. The cell dwell times are modeled as exponential distributions in some past literature,
but real fast user’s ones are not exponentially distributed [8]. We can reasonably assume that
the holding channel times of the static user is an exponential distribution. The average cell dell
times for high speed users depend on the speed of the users. The users are moving in a random
movement pattern in a cellular network. We need a general fitting model for approximating the
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FIGURE 1. The time diagram for call holding time and cell dwell time

measured data for fitting. The distribution of a Hyper-Erlang random variable X is defined by

f(x) =
p∑

i=1

αi
(µix)ri−1

(ri − 1)!
µi exp(−µix) (1)

where the mean rate µ is µ =
∑p

i=1 αiriµi for some given p.
We discuss how the distributions of the cell dwell time and the call holding time influence the

distributions of the new and handoff call channel holding times in Figure 1. Let Tc denote the
lifetime of the call holding that is the length from the instant of admission by the base station
to the instant when the connection is terminated in the cell or in another cell after several more
handovers. If the call holding time has an exponential distribution, denoted by fc(x), then
the residual call length of the handover also has the same distribution, due to the memoryless
property. Figure 1 shows diagram for our study similar to that in [11]. Let ti for 2 ≤ i ≤ m
be the typical cell dwell time in a cell for a handoff user, r1 be a cell dwell time in the first cell
for a new call. rf is a residual call holding time. We assume that cell dwell time are generally
distributed as (1) depending on the mobility of a mobile user

The number of handoff times H that a mobile crosses different boundaries during a call
holding time is a random variable depending on the cell size, call holding time and mobility
parameter [12]. If the density function of the independent identical distribution calling holding
times has a general distribution, then the handoff rate for a nonblocking call is given by

E[H] =
(1− Pnb)

2πj

∫ σ+j∞

σ−j∞

µ[1− f∗(s)]
s2[1− (1− Phd)f∗(s)]

f∗c (−s)ds, (2)

where fc(t) is defined by the distribution of call holding time and f(t) is defined by the distri-
bution of cell dwell time with mean rate µ (refer to [11]). Then the handoff rate λh is

λh = λn(1− Pnb)E[H]. (3)

We can see that the handoff call arrival rate λh depends on the user mobility and the new call
arrival rate (λn) (3).

2.2. M/Ph/C/K Modeling. We model call admission control of a single cell by using M/Ph/C/K
model. New call and handoff arrival processes are assumed Poisson processes with arrival rates
λn and λh, respectively. Cell dwell times are modeled by the server with phase-type distribu-
tion. A phase-type distribution has finite states. For k processes, we require a k +2 component
vector (n;nq, nk, nk−1, · · · , n1) to describe the state of a single cell behavior where n is the to-
tal number of customers in the system, the remaining i components ni for 0 ≤ i ≤ k represent
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the distribution of customers in various phases of service, and nq is the number of customers
in the queue. A lexicographic set Mn is defined by

Mn = {(n;nq, nk, · · · , n1)} (4)

where n − nq =
∑k

i=1 ni. Here, nq = 0 if n ≤ C. nq = n − C if n > C. Let us define a
lexicographic ordering relation on the set Mn. Let us define the ordering relation (≺) of the
lexicographic labeling by (n;nq, nk, · · · , n1) ≺ (n;n′q, n′k, · · · , n′1) if it satisfies one of the
following statements:

(1) there is a first j from the left side such that nj < n′j ,and ni = n′i for all i > j if
0 ≤ n ≤ C (nq = n′q = 0)

(2) there is a first j from the left side such that nj < n′j , nq = n′q and ni = n′i for all i > j
if n ≥ C.

The cardinality of a lexicographic ordering set Mn for n customers is defined by mn

(|Mn| = mn). Accordingly, the cardinality of Mn can be computed by

mn =

{
(n+k−1)!
n!(k−1)! , when 1 ≤ n ≤ C;
(C+k−1)!
C!(k−1)! , when K ≥ n > C.

(5)

where n! is the factorial of n and K is the maximal number of customers in the system. This
gives the number of the total elements of the state space, T = 1 +

∑K
n=1 mn. There is an

one-to-one mapping such that (n;nq, nk, nk−1, · · · , n1) corresponds to [n, l] for 1 ≤ l ≤ mn

with the same order. The state probability pn;nk,nk−1,··· ,n1 represents the probability for which
there are n customers in system and ni customers in the phase i of service for i = 1, · · · k,
where nk + nk−1 + · · · + n1 = min{n,C}. If there is no ambiguity, we use the simplified
notation p[n,l] = pn;nq ,nk,nk−1,··· ,n1 . The vector-valued balanced equation can be written by

D0~p0 = V0~p0 + W0~p1

Dn~pn = Un~pn−1 + Vn~pn + Wn~pn+1

DK~pK = UK~pK−1 + VK~pK ,

(6)

where ~pn =
[
p[n,1] p[n,2] · · · p[n,mn]

]t is a column vector with dimension mn, mn is the
number of the possible states when there are n customers [13]. Vn is a matrix that presents
a transition from an internal state of a server into another internal state without changing the
numbers of customers in the queue and system. Wn is denoted a transition matrix induced by
a customer departure from the system, Un is a transition matrix induced by a new customer
arrival. Dn is a diagonal matrix whose (i, i) entry equals the sum of all the entries in the i-th
columns of the matrices Un+1, Vn and Wn−1, i.e.

Dn(i, i) =
mn−1∑

j=1

Un(j, i) +
mn∑

j=1

Vn(j, i) +
mn+1∑

j=1

Wn(j, i).
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Refer to the global state description of M/Ph/C in Chapter 6 [14] to know the detail descrip-
tion. The normalization equation is satisfied as follows:

∑N
n=0

∑mn
i=1 p[n,i] = 1. The steady

state probabilities pn can be computed by
∑mn

i=1 p[n,i].

3. ANALYSIS OF CALL ADMISSION CONTROL SCHEME

3.1. CAC with Guard channel and Handoff Queueing. We will analyze the performance
of a CAC scheme with handoff queueing and guard channels. We assume that the channel
holding times for new calls and handoff calls are independent and have different distribution
[3] [12] [9]. The one-dimensional Markov chain model for CAC schemes assuming that cell
dwell times of new calls and handoff calls are identically distributed may not be appropriate.
Therefore, the multi-dimensional Markov chain model is needed.

Let us consider the channel holding time. There are two kinds of channel holding times :
a new call channel holding and handoff call channel holding time. Let tnh and thh denote the
new call channel holding time and the handoff call channel holding time, respectively. The
new call channel holding time is tnh = min{Tc, r1} and the handoff call channel holding time
is thh = min{rf , tm}. We separated calls into new calls and handoff calls when considering
the channel holding time. We need to consider the channel holding time for merged traffic
of new calls with rate λn and handoff calls with rate λh. We assume that the distributions
of channel holding times is approximated by hyper-Erlang distribution. We study the multi-
dimensional Markov chain under the assumption that some random variable, such as dwell time
may be modeled by the hyper-Erlang distribution. We study the multi-dimensional Markov
chain under the assumption that some random variable, such as cell dwell time may be modeled
by the Hyper-Erlang distribution [12] [9]. We develop an algorithm that computes the blocking
probability of new calls and the dropping probability of handoff calls. We develop an algorithm
that computes the blocking probability of new calls and the dropping probability of handoff
calls.

Figure 2 shows an example for C = 6, M = 2, N = 1 and B = 3. Let pn1,n2 denote
the steady-state probability that there are n1 new calls and n2 handoff calls in the cell. Let us
consider the two-dimensional steady-state probability p(n1, n2) occurring in the M/Ph/C/N
queueing system. The Poisson interarrival and Hyper-Erlang distributions in M/Ph/C/N
queueing system can model two-dimensional Markov chain as a generalized version of two-
dimensional Markov chain introduced in [15]. We assume that each base station has a finite
buffer size B. Let C be the total number of channels in a cell and M and N be the number
of channels only assigned for new calls and handoff calls, respectively. There are C − M −
N shared channels that can be used by either type of call. All channels are employed in a
first-come first-serve manner. The queue model can be described by a two-dimensional (i, j)
Markov chain, where i and j denote the numbers of existing new calls and handoff calls in a
cell, respectively. The two-dimensional state space is given by

S = {(i, j)|0 ≤ i < M, 0 ≤ j ≤ C −M + B or

M ≤ i ≤ C −N, 0 ≤ j ≤ C − i + B}.
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FIGURE 2. Two dimension Markov Chain

The state space S of the two-dimensional Markov chain can be divided into three parts as
follows:

S1 ={(i, j)|i + j < C, 0 < i < C −N, 0 < j < C −M}
S2 ={(i, j)|i ≤ M, C −M ≤ j ≤ C −M + B}
S3 ={(i, j)|i + j ≥ C,M ≤ i ≤ C −N}.

Let us define a vector ~ni = (ni,q, ni,k · · · , ni,1). For c servers, we require a k+2 component
vector to describe the state of the system, which is defined by (ni;~ni) = (ni;ni,q, ni,k, · · · , ni,1)
in (4) where ni = ni,q +

∑k
j=1 ni,j for i = 1, 2. The new call and handoff states can be re-

ordered by lexicographical labeling. Let pn1,n2 denote the state probability that there are n1

new calls and n2 handoff calls. The probability pn1,n2 can be divided into the vector-valued
probability ~pn1,n2 by lexicographical ordering. The transition diagram for the new and handoff
call bounding schemes with buffers for handoff is modeled by the two-dimensional Markov
chain.
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Define pn1,n2(l1, l2) by pn1,n2(l1, l2) = pn1;~n1,n2;~n2
where ~ni is li-th elements of Mni for

i = 1, 2. Then, the state vector ~pn1,n2 can be defined by

~pn1,n2 =




pn1,n2(0, 0)
pn1,n2(0, 1)

...
pn1,n2(0,mn2)
pn1,n2(1, 0)
pn1,n2(1, 1)

...
pn1,n2(mn1 ,mn2)




. (7)

The state vector ~pn1,n2 can be defined such that s = mn1s1 + s2 element is pn1,n2(s1, s2).
Then state probability pn1,n2 is the sum of all the elements of the state vector probability
~pn1,n2 since the probability pn1,n2 can be divided into the vector-valued probability ~pn1,n2

by lexicographical ordering. In Figure 2, we can see that S can be divided into S1, S2, and
S3. First, compute the transition matrix of state (i, j) ∈ S1. We define UI ,WI , V, IU , IW for
convenience ) from Mn1 ⊗Mn1 to Mn̄1 ⊗Mn̄2 as follows:

UI(n1, n2) , Un1 ⊗ Imn2

WI(n1, n2) , Wn1 ⊗ Imn2

V (n1, n2) , Vn1 ⊗ Imn2
+ Imn1

⊗ Vn2

IU (n1, n2) , Imn1
⊗ Un2

IW (n1, n2) , Imn1
⊗Wn2

(8)

where Unj , Vnj and Wnj for j = 1, 2 are defined by (6), Im is an m×m identity matrix, ⊗ is
a Kronecker product, and (n1, n2) is a feasible state in S. Then, the global balanced equation
can be written by

D(n1, n2)~pn1,n2 = UI(n1, n2) · ~pn1−1,n2+

V (n1, n2)~pn1,n2 + WI(n1, n2) · ~pn1+1,n2

+ IU (n1, n2) · ~pn1,n2−1+

IW (n1, n2) · ~pn1,n2+1

(9)

where D(n1, n2) = {λn+λh+n1µn+n2µh}Imn1 ·mn2
, the negative new call state probability

~p−1,n2 are zero mn2 vectors, and the negative handoff call state probability ~pn1,−1 are zero
mn1 vectors. Second, for (i, j) included inside the region of S2 (not a boundary value), we
can derive UI ,WI , V, IU , IW . D(n1, n2) is computed by D(n1, n2) = {λn + λh + n1µn +
(C −M)µh + (n2 − C + M)η}I . Third, for (i, j) included inside of the region S3, we note
from Fig. 2 that there are no arrows in the places of new call arrival rates because new calls
are blocked. Thus, UI ’s are zero matrices. For WI , after a new call is served, the remaining
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capacity is used by handoff calls, because there are handoff calls waiting in the queue. Thus,
the number of handoff calls instantly receiving service is added by 1 in the first service phase.
WI is computed by

WI(n1, n2) , Wn1 ⊗




0 0 · · · 0
...

...
. . .

...
0 0 · · · 0
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1




.

D(n1, n2) is computed by D(n1, n2) = {λh + n1µn + (C − n1)µh + (n2 − C + n1)η}I .
Finally, we should carefully consider the boundary states, such as S1 ∩ S2, S1 ∩ S3, S2 ∩ S3

and other boundaries of Si for i = 1, 2, 3. In order to handle the total state probability easily,
we define a vector ~Pn such that

~Pn =




~p0,n

~p1,n−1
...

~pn−1,1

~pn,0




where the total number of new calls and handoff calls is n. Then we can obtain a global
equation, as follows: Un

~Pn−1 +(Vn−Dn)~Pn +Wn
~Pn+1 = 0, for 0 ≤ n ≤ K, where Un, Vn,

Wn and Dn are defined by

Un =




IU (0, n) 0 · · · 0
UI(1, n− 1) IU (1, n− 1) · · · 0

...
...

. . .
...

0 0 · · · UI(n, 0)




Wn =




IW (0, n) WI(0, n) · · · 0
0 IW (1, n− 1) · · · 0
...

...
. . .

...
0 0 · · · WI(n, 0)




Vn = diag[V (0, n), V (1, n− 1), · · · , V (n, 0)]

Dn = diag[D(0, n), D(1, n− 1), · · · , D(n, 0)].

Dn is a diagonal matrix whose (i, i) entry equals the sum of all the entries in the i-th columns of
the matrices Wn−1, Vm and Un+1. The above global equation can be written by the following
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transition probability matrix

Q =




A0 W0 · · · 0 0
U1 A1 · · · 0 0
0 U2 · · · 0 0
...

...
. . .

...
...

0 0 · · · AK−1 WK−1

0 0 · · · UK AK




,

in which we set Ai = (Vi −Di).
In order to handle the total state probability easily, we define a vector ~Pn such that ~Pn =[

~p0,n ~p1,n−1 · · · ~pn−1,1 ~pn,0

]
where the total number of new calls and handoff calls is n.

Then, we can obtain a global balance equation, as follows:

Un
~Pn−1 + (Vn −Dn)~Pn +Wn

~Pn+1 = 0, (10)

for 0 ≤ n ≤ K. The detail derivation is omitted for the space saving. We solve the following
equations

Q~P = 0

E ~P = 1
(11)

where E =
[
1 1 · · · 1

]
. Using the results, let us compute the new call dropping prob-

ability, the terminated handoff call probability, and queueing delay as QoS metrics. A new
call arrival is blocked when it arrives at the state (i, j) ∈ S3. Therefore, the new call block-
ing probability Pnb is the sum of the conditional state probabilities when a new call arrives
in the state (i, j) ∈ S1, such as Pnb =

∑
(i,j)∈S3

pi,j . The dropping probability of a handoff
call can be calculated as the fraction of the incomplete handoff calls whose mobile leave the
handoff area prior to their coming into the first queue position and getting a channel. The drop-
ping probability Phd|(i,j) is defined by Phd =

∑
(i,j)∈HD pi,j where HD = {(i, j) ∈ S|j =

C −M + B, or i + j = C}.
We consider several methods for computing stationary probability distributions for large

Markov Chain. There are two methods, direct and iterative, for solving linear systems. Iterative
methods are the most commonly used methods for obtaining the stationary probability vector
from the infinitesimal generator. In iterative method, the involved operations do not alter the
form of the matrix and thus compact storage, which minimize the amount memory required to
store the matrix, may be conveniently implemented, since the matrices involved are large and
sparse. With direct methods, the elimination of one non-zero element of the matrix during the
reduction phase often results in the creation of several non-zero elements in the position which
contained zero. A successful direct method must incorporated a means of overcoming these
difficulties.

When we use a good initial approximation, we should expect to compute the real solution
in relatively few iterations. This is especially beneficial when a series of related experiments
is being conducted and there is a little change. But iterative methods have the disadvantage



128 KYUNGSUP KIM

that they often require a long time to converge to the desired solution. Direct methods can be
recommended if they obtain the solution in less time. However, we solve the linear system by
direct method keeping sparse matrix.

3.2. Fixed point algorithm. We want to compute the CAC parameters as the values for a
handoff call dropping probability Phd, new call blocking probability Pnb, and handoff arrival
rate λh, when new call arrival rates λn are known. These values can not computed by using
local information in a single cell, but need the global information. However, it is impossible to
know the global information, because the total cellular system is very large and dynamics. The
values for λh depends on the integration on each the drop or blocking probability of the total
cellular system. So, we believe that a local value of λh measured in single cell is not a steady
state value and is a dynamical value depending on instant state. Therefore, the values for Phd,
Pnb, λh, and λn should be predicted by an iterative method under the simplified model similar
to [16] [3]. Beginning with an proper initial guess for the unknowns, the equations are solved
numerically using an iterative method. This section shows how to use an iterative technique to
compute Pnb, and Phd using the equations derived in Sec. 3.1. The iterative algorithm is as
follows:

Algorithm 1 (Fixed point algorithm). Compute Pnb, and Phd:
• Input parameters: the new call arrival rate λn, the number of channels C, and the

mean and derivation of the cell dwell time.
• Output values: the handoff call arrival rate λh, the new call blocking probability Pnb,

and the handoff dropping probability Phd.
(1) Select initial values for Pnb and Phd.
(2) Compute the handoff call rate λh as (3) (the instant value can directly be mea-

sured).
(3) Update old values:

Pnb,old ← αPnb,old + (1− α)Pnb

Phd,old ← αPhd,old + (1− α)Phd,

where 0 ≤ α < 1.
(4) Compute the new-call-blocking and handoff-call-dropping probabilities (Pnb and

Phd, respectively) by using the results in Sec. 3.1.
(5) If |Pnb,old−Pnb| and |Phd,old−Phd| are larger than the given thresholds, then go

to step 2. Otherwise, go to the final step
(6) The values for λh, Pnb and Phd converge.

In Step 3, α is an exponential moving average factor. The convergence rate depends on α.

4. NUMERICAL RESULTS

In this section, the numerical computation results obtained with our analytical model are
discussed. We compare the performance QoS metrics of CAC with guard channel and finite
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FIGURE 3. The loss probabilities(CBP and CDP) for Guard channel with re-
spect to queue length
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FIGURE 4. The CDP and CBP probabilities with respect to Erlang Index k

queueing for various parameter settings to find the critical parameters of the performance under
the assumption that the cell dwell time distribution is an Erlang distribution as a special case.

Figure 3 illustrates the effects of the change of Erlang index on the new-call-blocking and
handoff-call-dropping probabilities, depending on queue length with respect to each Erlang
index. We set λn = 10, λh = 10, C = 3, M = 0, N = 0, µh = µn = 5, and 0 ≤ B ≤ 5.
We compare the different Erlang distributions with same mean 1

µ , but different variances 1
(kµ2)

,
when guard channel schemes with queue is used. We can see that there is some differences
in the blocking and dropping probabilities for different Erlang Indices. We can verify that the
results of our analysis are almost equal to the results derived by the event-driven simulation in
Fig 3. Here, arrival process in each cell is generated with identical independent distribution.
However, it is known as Erlang loss that the steady state probabilities for an M/G/C/C is the
same as those of an M/M/C/C with the same arrival process and the channel number [16].
Here, we can also see that there are some differences of the dropping and blocking probabilities
for M/Ek/C/K with respect to the Erlang index k.
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We consider the effects of both the mobility and traffic types on the network performance
for different Erlang Indexes. We set λn = 20, C = 6, M = 2, N = 3, µh = µn = 5, η = 2.5,
and B = 5. In this example, the handoff arrival rate λh is computed by using (3). Figure 4
shows differences of the new-call-blocking probability and the handoff-dropping-probability,
with respect to k. λh, Pnb, and Phd are computed by Algorithm 1. In numerical experiment, we
can see that α is closely related to the convergence of the algorithm. When α = 0, algorithm
does not converge but rather, it oscillates. Thus, in order to prevent the divergence of the
algorithm, we use the exponential moving average filter. Figure 4 also shows the convergence
of Phd, Phb, and λh. There is a trade-off between the convergence and the stability of the
algorithm in choosing α.

5. CONCLUSION

We have developed an analytical model for a cellular system that utilizes CAC with guard
channel and handoff queueing under the assumption that cell dwell time has a phase-type distri-
bution. We have made CAC performance analysis reflected mobility effect. We have proposed
a numerical algorithm to compute the QoS metrics, such as the new-call-blocking probability
and the handoff-call forced-terminated probability when the distribution of channel holding
times is an Erlang distribution. The complexity of the computation increases exponentially as
the dimension of phase increase. By numerical experiment results, we have verified that there
should be a tradeoff between the exactness of the performance model and the computational
complexity. We have verified the analysis reliance by using event-driven simulation. In future
works, the multidimensional mobility should be researched.
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