• Title/Summary/Keyword: numerical error

Search Result 2,185, Processing Time 0.032 seconds

Radar-based rainfall prediction using generative adversarial network (적대적 생성 신경망을 이용한 레이더 기반 초단시간 강우예측)

  • Yoon, Seongsim;Shin, Hongjoon;Heo, Jae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.8
    • /
    • pp.471-484
    • /
    • 2023
  • Deep learning models based on generative adversarial neural networks are specialized in generating new information based on learned information. The deep generative models (DGMR) model developed by Google DeepMind is an generative adversarial neural network model that generates predictive radar images by learning complex patterns and relationships in large-scale radar image data. In this study, the DGMR model was trained using radar rainfall observation data from the Ministry of Environment, and rainfall prediction was performed using an generative adversarial neural network for a heavy rainfall case in August 2021, and the accuracy was compared with existing prediction techniques. The DGMR generally resembled the observed rainfall in terms of rainfall distribution in the first 60 minutes, but tended to predict a continuous development of rainfall in cases where strong rainfall occurred over the entire area. Statistical evaluation also showed that the DGMR method is an effective rainfall prediction method compared to other methods, with a critical success index of 0.57 to 0.79 and a mean absolute error of 0.57 to 1.36 mm in 1 hour advance prediction. However, the lack of diversity in the generated results sometimes reduces the prediction accuracy, so it is necessary to improve the diversity and to supplement it with rainfall data predicted by a physics-based numerical forecast model to improve the accuracy of the forecast for more than 2 hours in advance.

Minimum area for circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression

  • Inocencio Luevanos-Soto;Arnulfo Luevanos-Rojas;Victor Manuel Moreno-Landeros;Griselda Santiago-Hurtado
    • Coupled systems mechanics
    • /
    • v.13 no.3
    • /
    • pp.201-217
    • /
    • 2024
  • This study aims to develop a new model to obtain the minimum area in circular isolated footings with eccentric column taking into account that the surface in contact with the ground works partially in compression, i.e., a part of the contact area of the footing is subject to compression and the other there is no pressure (pressure zero). The new model is formulated from a mathematical approach based on a minimum area, and it is developed by integration to obtain the axial load "P", moment around the X axis "Mx" and moment around the Y axis "My" in function of σmax (available allowable soil pressure) R (radius of the circular footing), α (angle of inclination where the resultant moment appears), y0 (distance from the center of the footing to the neutral axis measured on the axis where the resultant moment appears). The normal practice in structural engineering is to use the trial and error procedure to obtain the radius and area of the circular footing, and other engineers determine the radius and area of circular footing under biaxial bending supported on elastic soils, but considering a concentric column and the contact area with the ground works completely in compression. Three numerical problems are given to determine the lowest area for circular footings under biaxial bending. Example 1: Column concentric. Example 2: Column eccentric in the direction of the X axis to 1.50 m. Example 3: Column eccentric in the direction of the X axis to 1.50 m and in the direction of the Y axis to 1.50 m. The new model shows a great saving compared to the current model of 44.27% in Example 1, 50.90% in Example 2, 65.04% in Example 3. In this way, the new minimum area model for circular footings will be of great help to engineers when the column is located on the center or edge of the footing.

Prediction of Urban Flood Extent by LSTM Model and Logistic Regression (LSTM 모형과 로지스틱 회귀를 통한 도시 침수 범위의 예측)

  • Kim, Hyun Il;Han, Kun Yeun;Lee, Jae Yeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.273-283
    • /
    • 2020
  • Because of climate change, the occurrence of localized and heavy rainfall is increasing. It is important to predict floods in urban areas that have suffered inundation in the past. For flood prediction, not only numerical analysis models but also machine learning-based models can be applied. The LSTM (Long Short-Term Memory) neural network used in this study is appropriate for sequence data, but it demands a lot of data. However, rainfall that causes flooding does not appear every year in a single urban basin, meaning it is difficult to collect enough data for deep learning. Therefore, in addition to the rainfall observed in the study area, the observed rainfall in another urban basin was applied in the predictive model. The LSTM neural network was used for predicting the total overflow, and the result of the SWMM (Storm Water Management Model) was applied as target data. The prediction of the inundation map was performed by using logistic regression; the independent variable was the total overflow and the dependent variable was the presence or absence of flooding in each grid. The dependent variable of logistic regression was collected through the simulation results of a two-dimensional flood model. The input data of the two-dimensional flood model were the overflow at each manhole calculated by the SWMM. According to the LSTM neural network parameters, the prediction results of total overflow were compared. Four predictive models were used in this study depending on the parameter of the LSTM. The average RMSE (Root Mean Square Error) for verification and testing was 1.4279 ㎥/s, 1.0079 ㎥/s for the four LSTM models. The minimum RMSE of the verification and testing was calculated as 1.1655 ㎥/s and 0.8797 ㎥/s. It was confirmed that the total overflow can be predicted similarly to the SWMM simulation results. The prediction of inundation extent was performed by linking the logistic regression with the results of the LSTM neural network, and the maximum area fitness was 97.33 % when more than 0.5 m depth was considered. The methodology presented in this study would be helpful in improving urban flood response based on deep learning methodology.

Development of a Dose Calibration Program for Various Dosimetry Protocols in High Energy Photon Beams (고 에너지 광자선의 표준측정법에 대한 선량 교정 프로그램 개발)

  • Shin Dong Oh;Park Sung Yong;Ji Young Hoon;Lee Chang Geon;Suh Tae Suk;Kwon Soo IL;Ahn Hee Kyung;Kang Jin Oh;Hong Seong Eon
    • Radiation Oncology Journal
    • /
    • v.20 no.4
    • /
    • pp.381-390
    • /
    • 2002
  • Purpose : To develop a dose calibration program for the IAEA TRS-277 and AAPM TG-21, based on the air kerma calibration factor (or the cavity-gas calibration factor), as well as for the IAEA TRS-398 and the AAPM TG-51, based on the absorbed dose to water calibration factor, so as to avoid the unwanted error associated with these calculation procedures. Materials and Methods : Currently, the most widely used dosimetry Protocols of high energy photon beams are the air kerma calibration factor based on the IAEA TRS-277 and the AAPM TG-21. However, this has somewhat complex formalism and limitations for the improvement of the accuracy due to uncertainties of the physical quantities. Recently, the IAEA and the AAPM published the absorbed dose to water calibration factor based, on the IAEA TRS-398 and the AAPM TG-51. The formalism and physical parameters were strictly applied to these four dose calibration programs. The tables and graphs of physical data and the information for ion chambers were numericalized for their incorporation into a database. These programs were developed user to be friendly, with the Visual $C^{++}$ language for their ease of use in a Windows environment according to the recommendation of each protocols. Results : The dose calibration programs for the high energy photon beams, developed for the four protocols, allow the input of informations about a dosimetry system, the characteristics of the beam quality, the measurement conditions and dosimetry results, to enable the minimization of any inter-user variations and errors, during the calculation procedure. Also, it was possible to compare the absorbed dose to water data of the four different protocols at a single reference points. Conclusion : Since this program expressed information in numerical and data-based forms for the physical parameter tables, graphs and of the ion chambers, the error associated with the procedures and different user could be solved. It was possible to analyze and compare the major difference for each dosimetry protocol, since the program was designed to be user friendly and to accurately calculate the correction factors and absorbed dose. It is expected that accurate dose calculations in high energy photon beams can be made by the users for selecting and performing the appropriate dosimetry protocol.

A Study on the Data Driven Neural Network Model for the Prediction of Time Series Data: Application of Water Surface Elevation Forecasting in Hangang River Bridge (시계열 자료의 예측을 위한 자료 기반 신경망 모델에 관한 연구: 한강대교 수위예측 적용)

  • Yoo, Hyungju;Lee, Seung Oh;Choi, Seohye;Park, Moonhyung
    • Journal of Korean Society of Disaster and Security
    • /
    • v.12 no.2
    • /
    • pp.73-82
    • /
    • 2019
  • Recently, as the occurrence frequency of sudden floods due to climate change increased, the flood damage on riverside social infrastructures was extended so that there has been a threat of overflow. Therefore, a rapid prediction of potential flooding in riverside social infrastructure is necessary for administrators. However, most current flood forecasting models including hydraulic model have limitations which are the high accuracy of numerical results but longer simulation time. To alleviate such limitation, data driven models using artificial neural network have been widely used. However, there is a limitation that the existing models can not consider the time-series parameters. In this study the water surface elevation of the Hangang River bridge was predicted using the NARX model considering the time-series parameter. And the results of the ANN and RNN models are compared with the NARX model to determine the suitability of NARX model. Using the 10-year hydrological data from 2009 to 2018, 70% of the hydrological data were used for learning and 15% was used for testing and evaluation respectively. As a result of predicting the water surface elevation after 3 hours from the Hangang River bridge in 2018, the ANN, RNN and NARX models for RMSE were 0.20 m, 0.11 m, and 0.09 m, respectively, and 0.12 m, 0.06 m, and 0.05 m for MAE, and 1.56 m, 0.55 m and 0.10 m for peak errors respectively. By analyzing the error of the prediction results considering the time-series parameters, the NARX model is most suitable for predicting water surface elevation. This is because the NARX model can learn the trend of the time series data and also can derive the accurate prediction value even in the high water surface elevation prediction by using the hyperbolic tangent and Rectified Linear Unit function as an activation function. However, the NARX model has a limit to generate a vanishing gradient as the sequence length becomes longer. In the future, the accuracy of the water surface elevation prediction will be examined by using the LSTM model.

A Comparison between Simulation Results of DSSAT CROPGRO-SOYBEAN at US Cornbelt using Different Gridded Weather Forecast Data (격자기상예보자료 종류에 따른 미국 콘벨트 지역 DSSAT CROPGRO-SOYBEAN 모형 구동 결과 비교)

  • Yoo, Byoung Hyun;Kim, Kwang Soo;Hur, Jina;Song, Chan-Yeong;Ahn, Joong-Bae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.164-178
    • /
    • 2022
  • Uncertainties in weather forecasts would affect the reliability of yield prediction using crop models. The objective of this study was to compare uncertainty in crop yield prediction caused by the use of the weather forecast data. Daily weather data were produced at 10 km spatial resolution using W eather Research and Forecasting (W RF) model. The nearest neighbor method was used to downscale these data at the resolution of 5 km (W RF5K). Parameter-elevation Regressions on Independent Slopes Model (PRISM) was also applied to the WRF data to produce the weather data at the same resolution. W RF5K and PRISM data were used as inputs to the CROPGRO-SOYBEAN model to predict crop yield. The uncertainties of the gridded data were analyzed using cumulative growing degree days (CGDD) and cumulative solar radiation (CSRAD) during the soybean growing seasons for the crop of interest. The degree of agreement (DOA) statistics including structural similarity index were determined for the crop model outputs. Our results indicated that the DOA statistics for CGDD were correlated with that for the maturity dates predicted using WRF5K and PRISM data. Yield forecasts had small values of the DOA statistics when large spatial disagreement occured between maturity dates predicted using WRF5K and PRISM. These results suggest that the spatial uncertainties in temperature data would affect the reliability of the phenology and, as a result, yield predictions at a greater degree than those in solar radiation data. This merits further studies to assess the uncertainties of crop yield forecasts using a wide range of crop calendars.

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse (고압나트륨등 보광 온실의 열적 거동 및 엽온 분석)

  • Seungri Yoon;Jin Hyun Kim;Minju Shin;Dongpil Kim;Ji Wong Bang;Ho Jeong Jeong;Tae In Ahn
    • Journal of Bio-Environment Control
    • /
    • v.32 no.1
    • /
    • pp.48-56
    • /
    • 2023
  • High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

Retrieval of Hourly Aerosol Optical Depth Using Top-of-Atmosphere Reflectance from GOCI-II and Machine Learning over South Korea (GOCI-II 대기상한 반사도와 기계학습을 이용한 남한 지역 시간별 에어로졸 광학 두께 산출)

  • Seyoung Yang;Hyunyoung Choi;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.933-948
    • /
    • 2023
  • Atmospheric aerosols not only have adverse effects on human health but also exert direct and indirect impacts on the climate system. Consequently, it is imperative to comprehend the characteristics and spatiotemporal distribution of aerosols. Numerous research endeavors have been undertaken to monitor aerosols, predominantly through the retrieval of aerosol optical depth (AOD) via satellite-based observations. Nonetheless, this approach primarily relies on a look-up table-based inversion algorithm, characterized by computationally intensive operations and associated uncertainties. In this study, a novel high-resolution AOD direct retrieval algorithm, leveraging machine learning, was developed using top-of-atmosphere reflectance data derived from the Geostationary Ocean Color Imager-II (GOCI-II), in conjunction with their differences from the past 30-day minimum reflectance, and meteorological variables from numerical models. The Light Gradient Boosting Machine (LGBM) technique was harnessed, and the resultant estimates underwent rigorous validation encompassing random, temporal, and spatial N-fold cross-validation (CV) using ground-based observation data from Aerosol Robotic Network (AERONET) AOD. The three CV results consistently demonstrated robust performance, yielding R2=0.70-0.80, RMSE=0.08-0.09, and within the expected error (EE) of 75.2-85.1%. The Shapley Additive exPlanations(SHAP) analysis confirmed the substantial influence of reflectance-related variables on AOD estimation. A comprehensive examination of the spatiotemporal distribution of AOD in Seoul and Ulsan revealed that the developed LGBM model yielded results that are in close concordance with AERONET AOD over time, thereby confirming its suitability for AOD retrieval at high spatiotemporal resolution (i.e., hourly, 250 m). Furthermore, upon comparing data coverage, it was ascertained that the LGBM model enhanced data retrieval frequency by approximately 8.8% in comparison to the GOCI-II L2 AOD products, ameliorating issues associated with excessive masking over very illuminated surfaces that are often encountered in physics-based AOD retrieval processes.

High-Resolution Numerical Simulations with WRF/Noah-MP in Cheongmicheon Farmland in Korea During the 2014 Special Observation Period (2014년 특별관측 기간 동안 청미천 농경지에서의 WRF/Noah-MP 고해상도 수치모의)

  • Song, Jiae;Lee, Seung-Jae;Kang, Minseok;Moon, Minkyu;Lee, Jung-Hoon;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.17 no.4
    • /
    • pp.384-398
    • /
    • 2015
  • In this paper, the high-resolution Weather Research and Forecasting/Noah-MultiParameterization (WRF/Noah-MP) modeling system is configured for the Cheongmicheon Farmland site in Korea (CFK), and its performance in land and atmospheric simulation is evaluated using the observed data at CFK during the 2014 special observation period (21 August-10 September). In order to explore the usefulness of turning on Noah-MP dynamic vegetation in midterm simulations of surface and atmospheric variables, two numerical experiments are conducted without dynamic vegetation and with dynamic vegetation (referred to as CTL and DVG experiments, respectively). The main results are as following. 1) CTL showed a tendency of overestimating daytime net shortwave radiation, thereby surface heat fluxes and Bowen ratio. The CTL experiment showed reasonable magnitudes and timing of air temperature at 2 m and 10 m; especially the small error in simulating minimum air temperature showed high potential for predicting frost and leaf wetness duration. The CTL experiment overestimated 10-m wind and precipitation, but the beginning and ending time of precipitation were well captured. 2) When the dynamic vegetation was turned on, the WRF/Noah-MP system showed more realistic values of leaf area index (LAI), net shortwave radiation, surface heat fluxes, Bowen ratio, air temperature, wind and precipitation. The DVG experiment, where LAI is a prognostic variable, produced larger LAI than CTL, and the larger LAI showed better agreement with the observed. The simulated Bowen ratio got closer to the observed ratio, indicating reasonable surface energy partition. The DVG experiment showed patterns similar to CTL, with differences for maximum air temperature. Both experiments showed faster rising of 10-m air temperature during the morning growth hours, presumably due to the rapid growth of daytime mixed layers in the Yonsei University (YSU) boundary layer scheme. The DVG experiment decreased errors in simulating 10-m wind and precipitation. 3) As horizontal resolution increases, the models did not show practical improvement in simulation performance for surface fluxes, air temperature, wind and precipitation, and required three-dimensional observation for more agricultural land spots as well as consistency in model topography and land cover data.

Numerical Simulation of the Formation of Oxygen Deficient Water-masses in Jinhae Bay (진해만의 빈산소 수괴 형성에 관한 수치실험)

  • CHOI Woo-Jeung;PARK Chung-Kill;LEE Suk-Mo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.413-433
    • /
    • 1994
  • Jinhae Bay once was a productive area of fisheries. It is, however, now notorious for its red tides; and oxygen deficient water-masses extensively develop at present in summer. Therefore the shellfish production of the bay has been decreasing and mass mortality often occurs. Under these circumstances, the three-dimensional numerical hydrodynamic and the material cycle models, which were developed by the Institute for Resources and Environment of Japan, were applied to analyze the processes affecting the oxygen depletion and also to evaluate the environment capacity for the reception of pollutant loads without dissolved oxygen depletion. In field surveys, oxygen deficient water-masses were formed with concentrations of below 2.0mg/l at the bottom layer in Masan Bay and the western part of Jinhae Bay during the summer. Current directions, computed by the $M_2$ constituent, were mainly toward the western part of Jinhae Bay during flood flows and in opposite directions during ebb flows. Tidal currents velocities during the ebb tide were stronger than that of the flood tide. The comparision between the simulated and observed tidal ellipses showed fairly good agreement. The residual currents, which were obtained by averaging the simulated tidal currents over 1 tidal cycle, showed the presence of counterclockwise eddies in the central part of Jinhae Bay. Density driven currents were generated southward at surface and northward at the bottom in Masan Bay and Jindong Bay, where the fresh water of rivers entered. The material cycle model was calibrated with the data surveyed in the field of the study area from June to July, 1992. The calibrated results are in fairly good agreement with measured values within relative error of $28\%$. The simulated dissolved oxygen distributions of bottom layer were relatively high with the concentration of $6.0{\sim}8.0mg/l$ at the boundaries, but an oxygen deficient water-masses were formed within the concentration of 2.0mg/l at the inner part of Masan Bay and the western part of Jinhae Bay. The results of sensitivity analyses showed that sediment oxygen demand(SOD) was one of the most important influence on the formation of oxygen depletion. Therefore, to control the oxygen deficient water-masses and to conserve the coastal environment, it is an effective method to reduce the SOD by improving the polluted sediment. As the results of simulations, in Masan Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $50\%$ reduction in input COD loads from Masan basin and $70\%$ reduction in SOD was conducted. In the western part of Jinhae Bay, oxygen deficient water-masses recovered to 5.0mg/l when the $95\%$ reduction in SOD and $90\%$ reduction in culturing ground fecal loads was conducted.

  • PDF