DOI QR코드

DOI QR Code

Thermal Behavior and Leaf Temperature in a High Pressure Sodium Lamp Supplemented Greenhouse

고압나트륨등 보광 온실의 열적 거동 및 엽온 분석

  • Seungri Yoon (Protected Horticulture Researcher Institute, NIHHS) ;
  • Jin Hyun Kim (Protected Horticulture Researcher Institute, NIHHS) ;
  • Minju Shin (Protected Horticulture Researcher Institute, NIHHS) ;
  • Dongpil Kim (Protected Horticulture Researcher Institute, NIHHS) ;
  • Ji Wong Bang (Protected Horticulture Researcher Institute, NIHHS) ;
  • Ho Jeong Jeong (Protected Horticulture Researcher Institute, NIHHS) ;
  • Tae In Ahn (Department of Agriculture, Forestry and Bioresources (Horticultural Science and Biotechnology), Seoul National University)
  • 윤승리 (농촌진흥청 국립원예특작과학원) ;
  • 김진현 (농촌진흥청 국립원예특작과학원) ;
  • 신민주 (농촌진흥청 국립원예특작과학원) ;
  • 김동필 (농촌진흥청 국립원예특작과학원) ;
  • 방지웅 (농촌진흥청 국립원예특작과학원) ;
  • 정호정 (농촌진흥청 국립원예특작과학원) ;
  • 안태인 (서울대학교 농림생물자원학부)
  • Received : 2023.01.09
  • Accepted : 2023.01.20
  • Published : 2023.01.31

Abstract

High-pressure sodium (HPS) lamps have been widely used as a useful supplemental light source to emit sufficient photosynthetically active radiation and provide a radiant heat, which contribute the heat requirement in greenhouses. The objective of this study to analyze the thermal characteristics of HPS lamp and thermal behavior in supplemented greenhouse, and evaluate the performance of a horizontal leaf temperature of sweet pepper plants using computational fluid dynamics (CFD) simulation. We simulated horizontal leaf temperature on upper canopy according to three growth stage scenarios, which represented 1.0, 1.6, and 2.2 plant height, respectively. We also measured vertical leaf and air temperature accompanied by heat generation of HPS lamps. There was large leaf to air temperature differential due to non-uniformity in temperature. In our numerical calculation, thermal energy of HPS lamps contributed of 50.1% the total heat requirement on Dec. 2022. The CFD model was validated by comparing measured and simulated data at the same operating condition. Mean absolute error and root mean square error were below 0.5, which means the CFD simulation values were highly accurate. Our result about vertical leaf and air temperature can be used in decision making for efficient thermal energy management and crop growth.

고압나트륨등(high-pressure sodium, HPS 램프)은 작물 생육 발달에 필요한 충분한 양의 광합성유효방사를 제공하는 동시에 복사열을 통해 온실 난방 부하를 절감할 수 있어 겨울철 시설원예 보광 조명으로 널리 이용되고 있다. 그러나 겨울철에 생육 중기를 맞이하는 시설 과채류의 경우, 작물의 정단부가 복사열에 영향을 많이 받고, 캐노피 위치에 따라 엽온 차이가 증가될 수 있다. 또한 온실 기온 역시 보광등에서 발생한 열이 상부로 상승 및 정체되면서 불필요한 에너지 낭비 및 온도 불균일성 역시 심화될 수 있다. 따라서 본 연구의 목표는 CFD 열전달 해석을 통해 HPS 램프에 의한 열적 특성 및 생육 단계별 수평적 엽온 변화를 분석하고, 온실 내 수직적 기온 및 작물의 캐노피별 엽온을 측정하여, 온실 내 환경 균일성 제고 및 효과적 에너지 활용 방안을 모색하는 것이었다. 생육 초기, 중기, 및 후기를 대변하는 초장(1.0, 1.6, 2.2m)에서의 정단부 수평적 엽온을 CFD 시뮬레이션을 통해 분석하였다. 또한 HPS 램프 작동 이후 수직적 기온과 캐노피 높이별 엽온을 측정하였다. 실험 결과, 보광 시 엽온과 기온 간의 차이가 커지고, 수직적 기온 역시 불균일해짐을 알 수 있었다. 생육 단계가 진전될수록, 고온의 복사열이 중심부에 집중되며, 상단부 수평적 엽온 편차가 커지고, 균일성 역시 떨어지는 것을 알 수 있었다. 열획득 모델을 통한 수치해석 결과, 보광등이 2022년12월 기간 난방부하에 약 50.1% 기여하는 것을 알 수 있었다. 평균절대오차 및 평균제곱근 오차는 생육 초기 및 생육 중기 모두0.5 이하로, 실측값과 예측값에 높은 일치도를 보였다. 수직적 기온 및 엽온 분포와 생육 단계별 수평적 엽온 분포에 관한 본 연구의 결과는 효율적 에너지 관리 및 작물 생육 발달에 관한 의사결정에 도움이 될 수 있을 것으로 생각된다.

Keywords

Acknowledgement

본 결과물은 농림축산식품부 및 과학기술정보통신부, 농촌진흥청의 재원으로 농림식품기술기획평가원과 재단법인 스마트팜연구개발사업단의 스마트팜다부처패키지혁신기술개발사업의 지원을 받아 연구되었음(과제고유번호421001-03, 농촌진흥청 과제번호PJ016439202206).

References

  1. Ahamed M.S., H. Guo, and K. Tanino 2019, Energy saving techniques for reducing the heating cost of conventional greenhouses. Biosyst Eng 178:9-33. doi:10.1016/j.biosystemseng.2018.10.017
  2. Ali S.D., H.S. Ramaswamy, and G.B. Awuah 2002, Thermo-physical properties of selected vegetables as influenced by temperature and moisture content. J Food Process Eng 25:417-433. doi:10.1111/j.1745-4530.2002.tb00575.x
  3. Ballester C., M.A. Jimenez-Bello, J.R. Castel, and D.S. Intrigliolo 2013, Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric For Meteorol 168:120-129. doi:10.1016/j.agrformet.2012.08.005
  4. Brault D., C. Gueymard, R. Boily, and A. Gosselin 1989, Contribution of HPS lighting to the heating requirements of a greenhouse. Paper - Amer Soc Agr Eng (USA) 89.
  5. Buyel J.F., H.M. Gruchow, N. Todter, and M. Wehner 2016, Determination of the thermal properties of leaves by noninvasive contact free laser probing. J Biotechnol 217:100-108. doi:10.1016/j.jbiotec.2015.11.008
  6. Cathey H.M., and L.E. Campbell 1980, Light and lighting systems for horticultural plants. Hortic Rev 2:491-537. https://doi.org/10.1002/9781118060759.ch10
  7. Choi H.Y., T.W. Moon, D.H. Jung, and J.E. Son 2019, Prediction of air temperature and relative humidity in greenhouse via a multilayer perceptron using environmental factors. Protected Hort Plant Fac 28:95-103. (in Korean) doi:10.12791/KSBEC.2019.28.2.95
  8. Dhillon R., R. Francisco, J. Roach, S. Upadhyaya, and M. Delwiche 2014, A continuous leaf monitoring system for precision irrigation management in orchard crops. Tarim Makinalari Bilimi Dergisi 10:267-272.
  9. Fisher P., A.J. Both, and B. Bugbee 2017, Supplemental lighting technology, costs, and efficiency. In R Lopez, E Runkle (Eds.), Light management in controlled environments. Meister Media Worldwide, Willoughby, OH, USA, pp 74-81.
  10. Hong S.W., and I.B. Lee 2014, Predictive model of microenvironment in a naturally ventilated greenhouse for a model-based control approach. J Bio-Env Con 23:181-191. (in Korean) doi:10.12791/KSBEC.2014.23.3.181
  11. Hwang H.S., K.H. Lee H.W. Jeong, and S.J. Hwang 2022, Selection of supplemental light source for greenhouse cultivation of pepper during low radiation period through growth and economic analysis. J Bio-Env Con 31:204-211. (in Korean) doi:10.12791/KSBEC.2022.31.3.204
  12. Jeong I.S., C.G. Lee, L.H. Cho, S.Y. Park, S.J. Kim, D.H. Kim, and J.H. Oh 2021, Environmental prediction in greenhouse according to modified greenhouse structure and heat exchanger location for efficient thermal energy management. J Bio-Env Con 30:278-286. (in Korean) doi:10.12791/KSBEC.2021.30.4.278
  13. Jeong K.J., J.G. Yun, Y.S. Chon, H.S. Shin, and S.W. Lee 2018, Effect of supplementary or heating lamps on the yield, vase life, and leaf color of cut rose. Protected Hort Plant Fac 27:158-165. (in Korean) doi:10.12791/KSBEC.2018.27.2.158
  14. Jones H.G. 2004, Irrigation scheduling: advantages and pitfalls of plant-based methods. J Exp Bot 55:2427-2436. doi:10.1093/jxb/erh213
  15. Katzin D., S. van Mourik, F. Kempkes, and E.J. van Henten 2020, GreenLight - An open source model for greenhouses with supplemental lighting: evaluation of heat requirements under LED and HPS lamps. Biosyst Eng 194:61-81. doi:10.1016/j.biosystemseng.2020.03.010
  16. Khorsandi A., A. Hemmat, S.A. Mireei R. Amirfattahi, and P. Ehsanzadeh 2018, Plant temperature-based indices using infrared thermography for detecting water status in sesame under greenhouse conditions. Agric Water Manag 204:222-233. doi:10.1016/j.agwat.2018.04.012
  17. Kim H.J., M.Y. Lin, and C.A. Mitchell 2019, Light spectral and thermal properties govern biomass allocation in tomato through morphological and physiological changes. Environ Exp Bot 157:228-240. doi:10.1016/j.envexpbot.2018.10.019
  18. Kurowski P.M. 2015, Thermal analysis with solidworks simulation 2015 and flow simulation 2015. SDC Publications, KS, USA.
  19. Kwon J.K., I.H. Yu, K.S. Park, J.H. Lee, J.H. Kim, J.S. Lee, and D.S. Lee 2018, Supplemental lighting by HPS and PLS lamps affects growth and yield of cucumber during low radiation period. J Bio-Env Con 27:400-406. (in Korean) doi:10.12791/KSBEC.2018.27.4.400
  20. Lam J.C., C.L. Tsang, D.H.W. Li, and S.O. Cheung 2005, Residential building envelope heat gain and cooling energy requirements. Energy 30:933-951. doi:10.1016/j.energy.2004.07.001
  21. Lee C.G., J.S. Lee, H.J. Jeong, J.H. Lee, J.H. Kim, J.E. Son, I. Hwang, J.H. Shin, K.S. Park, and J.W. Lee 2021, Greenhouse supplemental lighting technology. National Institute of Horticultural & Herbal Science, RDA, Wanju, Korea, p 82. (in Korean)
  22. Lee T.S., G.C. Kang, H.K. Kim, J.P. Moon, S.S. Oh, and J.K. Kwon 2017, Analysis of air temperature and humidity distributions and energy consumptions according to use of air circulation fans in a single-span greenhouse. Protected Hort Plant Fac 26:276-282. (in Korean) doi:10.12791/KSBEC.2017.26.4.276
  23. Leinonen I., and H.G. Jones 2004, Combining thermal and visible imagery for estimating canopy temperature and identifying plant stress. J Exp Bot 55:1423-1431. doi:10.1093/jxb/erh146
  24. Nam S.W., and H.H. Shin 2015, Development of a method to estimate the seasonal heating load for plastic greenhouses. J Korean Soc Agric Eng 57:37-42. (in Korean) doi:10.5389/KSAE.2015.57.5.037
  25. Nelson J.A., and B. Bugbee 2015, Analysis of environmental effects on leaf temperature under sunlight, high pressure sodium and light emitting diodes. PLoS One 10:e0138930. doi:10.1371/journal.pone.0138930
  26. Ouzounis T., H. Giday, K.H. Kjaer, and C.O. Ottosen 2018, LED or HPS in ornamentals? A case study in roses and campanulas. Eur J Hortic Sci 83:166-172. doi:10.17660/eJHS.2018/83.3.6
  27. Palmitessa O.D., A.E. Prinzenberg, E. Kaiser, and E. Heuvelink 2021, Led and HPS supplementary light differentially affect gas exchange in tomato leaves. Plants 10:810. doi:10.3390/plants10040810
  28. Pino A., W. Bustamante, R. Escobar, and F.E. Pino 2012, Thermal and lighting behavior of office buildings in Santiago of Chile. Energy Build 47:441-449. doi:10.1016/j.enbuild.2011.12.016
  29. Righini I., B. Vanthoor, M.J. Verheul, M. Naseer, H. Maessen, T. Persson, and C. Stanghellini 2020, A greenhouse climateyield model focusing on additional light, heat harvesting and its validation. Biosyst Eng 194:1-15. doi:10.1016/j.biosystemseng.2020.03.009
  30. Saberian A., and S.M. Sajadiye 2019, The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation. Renew Energy 138:722-737. doi:10.1016/j.renene.2019.01.108
  31. Shin H.H., Y.S. Kim, and S.W. Nam 2019, Effect of pipes layout and flow velocity on temperature distribution in greenhouses with hot water heating system. Protected Hort Plant Fac 28:335-341. (in Korean) doi:10.12791/KSBEC.2019.28.4.335
  32. Yang S.H., C.G. Lee, A. Ashtiani-Araghi, J.Y. Kim, and J.Y. Rhee 2015, Heat gain and contribution to heating from supplemental lighting in greenhouse. Eng Agric Environ Food 8:67-71. doi:10.1016/j.eaef.2015.04.001
  33. Yu I.H., M.W. Cho, S.Y. Lee, H. Chun, and I.B. Lee 2007, Effects of circulation fans on uniformity of meteorological factors in warm air heated greenhouse. J Bio-Env Con 16:291-296. (in Korean)
  34. Zhang R., Y. Zhou, Z. Yue, X. Chen, X. Cao, X. Ai, B. Jiang, and Y. Xing 2019, The leaf-air temperature difference reflects the variation in water status and photosynthesis of sorghum under waterlogged conditions. PLoS One 14:e0219209. doi:10.1371/journal.pone.0219209