• Title/Summary/Keyword: numerical comparison problems

Search Result 221, Processing Time 0.029 seconds

Suitability Analysis of Numerical Models Related to Seepage through a Levee (제방 침투 수치해석 모형의 적합성 분석)

  • Im, Dong-Kyun;Yeo, Hong-Koo;Kim, Kyu-Ho;Kang, Jun-Gu
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.241-252
    • /
    • 2006
  • Numerical models for seepage analysis are useful tools to analyze problems and design protection techniques that are related to seepage through a levee. Though every model may have its own limitations and shortcomings, there were no generalized verifications or calibrations for the commercial models. It means that users can run the model and get the result without understanding nor taking any enough training. This paper Investigates applicability and suitability of some seepage numerical models by comparing analytical solutions with experiments in the user's viewpoint. The results showed that it is more desirable to use analyses with unsaturated-unsteady condition rather than those with saturated-steady conditions, since seepage phenomenon of real levees are changed according to water level and soil property. This study also compared the calculated unsteady solutions with the calculated steady solutions for the levee at Koa of the Nakdong River The comparison revealed that as the result, the safety factor of $2.0{\sim}3.5$ has the same effects for seepage protection techniques when they are designed on the basis of steady-state analysis.

Study on the Allowable Limit of Blasting-induced Vibration for Road Structures and Facilities (도로구조물의 발파진동 허용기준에 관한 연구)

  • Son, Moorak;Hong, Doopyo;Kwon, Ohcheol;Jung, Yeunkwun;Hwang, Youngcheol;Park, Duhee
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.12
    • /
    • pp.27-40
    • /
    • 2014
  • This paper is to provide the allowable limit blasting-induced vibration for road structures and facilities. For this purpose, first of all, this study examined various allowable limits of different structures from domestic and foreign countries, investigated related problems of the limits used in the country, and suggested the measures to minimize the related problems. Furthermore, this study proposed the blasting-induced vibration limit of road structures and facilities that could be used in the country from comparing and analyzing the various limits from foreign countries. To verify the proposed limit for a practical use in the field, field cases that had both a vibration magnitude and a damage level were collected and they were compared with the proposed limit. In addition, the proposed limit was also compared with the results of analytical and numerical analyses. The comparison and analysis indicated that the proposed limit of different road structures and facilities is valid for the practical use in the field. From this study, the proposed limit is expected to be used as the limit to estimate the damage levels of road structures and facilities due to blasting-induced vibrations in the field.

Kernel Integration Scheme for 2D Linear Elastic Direct Boundary Element Method Using the Subparametric Element (저매개변수 요소를 사용한 2차원 선형탄성 직접 경계요소법의 Kernel 적분법)

  • Jo, Jun-Hyung;Park, Yeongmog;Woo, Kwang-Sung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.413-420
    • /
    • 2012
  • In this study, the Kernel integration scheme for 2D linear elastic direct boundary element method has been discussed on the basis of subparametric element. Usually, the isoparametric based boundary element uses same polynomial order in the both basis function and mapping function. On the other hand, the order of mapping function is lower than the order of basis function to define displacement field when the subparametric concept is used. While the logarithmic numerical integration is generally used to calculate Kernel integration as well as Cauchy principal value approach, new formulation has been derived to improve the accuracy of numerical solution by algebraic modification. The subparametric based direct boundary element has been applied to 2D elliptical partial differential equation, especially for plane stress/strain problems, to demonstrate whether the proposed algebraic expression for integration of singular Kernel function is robust and accurate. The problems including cantilever beam and square plate with a cutout have been tested since those are typical examples of simple connected and multi connected region cases. It is noted that the number of DOFs has been drastically reduced to keep same degree of accuracy in comparison with the conventional isoparametric based BEM. It is expected that the subparametric based BEM associated with singular Kernel function integration scheme may be extended to not only subparametric high order boundary element but also subparametric high order dual boundary element.

Evaluation of Thermal and Shrinkage Stresses in Hardening Concrete Considering Early-Age Creep Effect (초기재령 콘크리트의 크리프를 고려한 온도 및 수축응력 해석)

  • 차수원;오병환;이형준
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.382-391
    • /
    • 2002
  • This study is devoted to the problems of thermal and shrinkage stresses in order to avoid cracking at early ages. The early-age damage induced by volume change has great influence on the long-term structural performance of the concrete structures such as its durability and serviceability To solve this complex problem, the computer programs for analysis of thermal and shrinkage stresses were developed. In these procedures, numerous material models are needed and the realistic numerical models have been developed and validated by comparison with relevant experimental results in order to solve practical problems. A framework has been established for formulation of material models and analysis with 3-D finite element method. After the analysis of the temperature, moisture and degree of hydration field in hardening concrete structure, the stress development is determined by incremental structural formulation derived from the principle of virtual work. In this study, the stress development is related to thermal and shrinkage deformation, and resulting stress relaxation due to the effect of early-age creep. From the experimental and numerical results it is found that the early-age creep p)ays important role in evaluating the accurate stress state. The developed analysis program can be efficiently utilized as a useful tool to evaluate the thermal and shrinkage stresses and to find measures for avoiding detrimental cracking of concrete structures at early ages.

Design of the Submerged Outlet Structure for Reducing Foam at a Power Plant using a Numerical Model Simulating Air Entrainment (공기연행 수치모형을 이용한 발전소 거품저감 수중방류구조 설계)

  • Kim, Ji-Young;Kang, Keum-Seok;Oh, Young-Min;Oh, Sang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.20 no.5
    • /
    • pp.452-460
    • /
    • 2008
  • Anti-foaming agents and foam fences have been used to remove the foam at the outfall of power plants, but there are some problems as consumption of maintenance costs and insufficiency of effect. Therefore, development of the methods how to remove the foam by stable coastal structure has been required. In this study, numerical simulation of air entrainment was carried out to design the submerged outlet structure for reducing foam using curtain walls. The air entrainment rate and the discharge of entrained air change according to the shape of weir and curtain wall. Hence, it is necessary to design the optimum section through comparison of each case. The optimum section which has the maximum rate of foam reduction was determined by the simulation results. In addition, it was found that the flow velocity at the submerged outlet is to be smaller than 1 m/s and the submerged depth of curtain wall is to be taller than height of the submerged outlet section.

Application of the convergence-confinement method of tunnel design to rock masses (암반 터널에서의 시공단계를 고려한 암반-지보 거동특성 곡선적용에 관한 연구)

  • Lee, Du-Wha;Choo, Seok-Yean;Lim, Sang-Bin;Park, Young-Jin;Ahn, Sung-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.2
    • /
    • pp.143-153
    • /
    • 2002
  • Convergence Confinement Method (CCM) makes a more simple judgement in a ground-support reaction than numerical method. Also this method is good for the applicability of construction feedback and the analysis of field measurement. However, there has been little research with respect to the application of CCM in tunnel construction. One of the problems in CCM is a decision of the time to support installation. To decide a reasonable supporting installation time, support characteristic curve and displacement characteristic curve considering construction stage are proposed. In addition, to predict displacement distribution ratio and load distribution ratio, the time dependent support reaction curve is used. Finally, through a comparison of the result between CCM and numerical analysis, the trust of this study is proved and the practical application is proposed to control resonable tunnel construction management.

  • PDF

Magnetic Field Analysis Due to the Remanent Magnetization Distributed on a Ferromagnetic Thin Plate by using Equivalent Magnetic Models and Material Sensitivity (등가 자기모델과 매질민감도법을 이용한 강자성체 판에 분포하는 영구자화에 기인한 자기장 신호분석)

  • Jeung, Gi-Woo;Kim, Dong-Wook;Kim, Dong-Hun;Yang, Chang-Seob;Chung, Hyun-Ju
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.3
    • /
    • pp.100-105
    • /
    • 2010
  • For predicting magnetic signals due to the remanent magnetization distributed on a ferromagnetic ship hull, this paper presents an efficient methodology for solving inverse problems, where the material sensitivity analysis based on the continuum mechanics is combined with the equivalent magnetic models. To achieve this, the 3D magnetic charge model and the magnetic dipole moment model are introduced and material sensitivity formulae applicable to each equivalent model are derived. The formulae offer the first-order gradient information of an objective function with respect to the variation of the magnetic charge or magnetic dipole and so an optimal solution can be easily obtained regardless of the number of design variables. To validate the proposed method, the numerical results are comparison with the real measurements of a mock-up model.

Analysis on the Behaviour of Foundation Using the Non-Linear Constitutive Laws (비선형구성식을 이용한 기초지반의 거동해석)

  • Jeong, Jin Seob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.2
    • /
    • pp.253-265
    • /
    • 1993
  • This paper presents a numerical method for implementing a nonlinear constitutive material model developed by Lade, into a finite element computer program. The techniques used are based on the displacement method for the solution of axial symmetric and plane strain nonlinear boundary value problems. Laboratory behaviour of Baekma river sand(#40-60) is used to illustrate the determination of the parameters and verification of the model. Computer procedure is developed to determine the material parameters for the nonlinear model from the raw laboratory test data. The model is verified by comparing its predictions with observed data used for the determination of the parameters and then with observed data not used for the determination. Three categories of tests are carried out in the back-prediction exercise; (1) A hydrostatic test including loading and unloading response, (2) Conventional triaxial drained compression tests at three different confining pressure and (3) A model strip footing test not including in the evaluation of material parameters. Pertinent observations are discussed based on the comparison of predicted response and experimental data.

  • PDF

Finite Element Analysis for Incremental Excavation in Fluid-Saturated Porous Media (유체포화 다공매체의 단계적 굴착해석을 위한 유한요소해석방법)

  • Koo, Jeong Hoi;Hong, Soon Jo;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.13 no.5
    • /
    • pp.109-122
    • /
    • 1993
  • ln this paper, a finite element analysis procedure is proposed for the incremental multi-step excavations in a fluid-saturated porous medium such as saturated soil ground. As the basis of derivation, Biot's equation was used. The proposed procedure was applied to some one- and two-dimensional problems under incremental excavations. Unsaturated cases as well as saturated cases were considered for comparison. Through numerical tests, the effects of permeability and excavation speed on the deformation history was investigated. Results showed that pore pressure built up during incremental excavation has a significant effect on the deformation and stresses of solid skeleton and validated the use of the present procedure for the analysis of multi-step excavations in fluid-saturated media such as in saturated shallow ground.

  • PDF

Effect of different water levels on the photosynthetic pigments of crops

  • Ryu, Hee-La;Jeong, Eun-Ju;Lee, Won-Hee;Lee, In-Jung
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.205-205
    • /
    • 2017
  • An excess soil water condition is one of the major problems for the field crops growing in paddy fields because of their poor drainage and less availability for oxygen uptake which leads to adversely affect the photosynthesis. Therefore, the current study was undertaken with aim to investigate the effects groundwater level on the photosynthetic response of soy bean (Urum), red bean (Arari), sesame (Geonbaek), perilla (Dayu) after the transplanting to the lysimeter to investigate the plant-water relation and their effect on photosynthesis. The chlorophyll content of the crops according to the humid conditions of the soy bean, sesame and the perilla was found to be 5%, 6.89 % and 13.7% higher than that of the groundwater treated at 40cm, respectively. On the other hand, the chlorophyll content of adzuki bean decreased 6.6% from the groundwater level of 40cm, and the sorghum decreased by 5.7%. As a result of investigating the Fv / Fm value of groundwater, the adzuki bean at 20cm above groundwater was lower than that of groundwater by 40cm immediately before flowering. The Fv / Fm value of soy bean and sesame at 40cm above groundwater were lowered by flowering under groundwater 20 cm and Fv / Fm value of sorghum is increased at 40 cm treatment immediately before flowering while the Fv / Fm values of the perilla had no significant difference in comparison to those at 20 cm and 40 cm of groundwater. In the case of chlorophyll fluorescence reaction, it is known that the when the absolute value is closer to 0.82, the stress is considered less. As a result of comparing the numerical values of the crops, it was found that the sorghum was the most stressed followed by adzuki bean and sesame, while the soy beans and perilla was found on the average, as they received less stress.

  • PDF