DOI QR코드

DOI QR Code

Magnetic Field Analysis Due to the Remanent Magnetization Distributed on a Ferromagnetic Thin Plate by using Equivalent Magnetic Models and Material Sensitivity

등가 자기모델과 매질민감도법을 이용한 강자성체 판에 분포하는 영구자화에 기인한 자기장 신호분석

  • Jeung, Gi-Woo (Department of Electrical Eng., Kyungpook National University) ;
  • Kim, Dong-Wook (Department of Electrical Eng., Kyungpook National University) ;
  • Kim, Dong-Hun (Department of Electrical Eng., Kyungpook National University) ;
  • Yang, Chang-Seob (The 6th R&D Institute-3, Agency for Defense Development) ;
  • Chung, Hyun-Ju (The 6th R&D Institute-3, Agency for Defense Development)
  • Received : 2010.05.19
  • Accepted : 2010.06.07
  • Published : 2010.06.30

Abstract

For predicting magnetic signals due to the remanent magnetization distributed on a ferromagnetic ship hull, this paper presents an efficient methodology for solving inverse problems, where the material sensitivity analysis based on the continuum mechanics is combined with the equivalent magnetic models. To achieve this, the 3D magnetic charge model and the magnetic dipole moment model are introduced and material sensitivity formulae applicable to each equivalent model are derived. The formulae offer the first-order gradient information of an objective function with respect to the variation of the magnetic charge or magnetic dipole and so an optimal solution can be easily obtained regardless of the number of design variables. To validate the proposed method, the numerical results are comparison with the real measurements of a mock-up model.

본 논문에서는 강자성 선체에 존재하는 영구자화 분포에 기인한 자기장 신호를 예측하고자 연속체역학에 기반을 둔 매질민감도법과 등가 자기 모델을 결합한 역문제 해석 기법을 제시한다. 이를 위하여 3차원 자기전하 모델과 2차원의 등가 자기쌍극자 모델을 구축하였고 각각의 등가모델에 맞는 매질민감도 공식을 유도하였다. 매질민감도법은 자기전하나 자기쌍극자 변화에 대한 목적함수의 1차 미분정보를 제공하고 설계변수의 개수에 영향을 받지 않기 때문에 최적해를 빠른 시간에 도출할 수 있다. 제안된 해석 기법의 타당성을 검증하기 위해서 실험을 통해 측정된 자기장 신호와 각각 등가모델에 의한 역문제 해석을 통해 얻어진 예측치를 비교하였다.

Keywords

References

  1. Xavier Brunotte and Gerard Meunier, IEEE Trans. Magn. 26, 2196 (1990). https://doi.org/10.1109/20.104667
  2. A. Vishnevski, I. Krasnov, and A. Lapokov, IEEE Trans. Magn. 29, 2152 (1993). https://doi.org/10.1109/20.221038
  3. Olivier Chadebec, Jean-Louis Coulomb. Jean-Poul Bongiraud, Gilles Cauffet, and Philippe Le Thiec, IEEE Trans. Magn. 38, 1005 (2002). https://doi.org/10.1109/20.996258
  4. Olivier Chadebec, Jean-Louis Coulomb, Gilles Cauffet, and Jean-Poul Bongiraud, IEEE Trans. Magn. 39, 1634 (2003). https://doi.org/10.1109/TMAG.2003.810429
  5. D.-H. Kim, K. S. Ship, and J. K. Sykulski, IEEE Trans. Magn. 40, 1156 (2004). https://doi.org/10.1109/TMAG.2004.824604
  6. D.-H. Kim, J. K. Sykulski, and D. A. Lowther, IEEE Trans. Magn. 41, 1752 (2005). https://doi.org/10.1109/TMAG.2005.846036
  7. DOT User Manual, Vanderplaats Research & Development, Inc., Colorado Springs (2001).
  8. MagNet 7 User’s Guide, Infolytica Corporation, Quebec(2010).