• Title/Summary/Keyword: numerical approach

Search Result 4,005, Processing Time 0.032 seconds

An Investigation of Anisotropic Tensile Strength of Transversely Isotropic Rock by Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 이방성 인장강도 해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.194-201
    • /
    • 2008
  • In order to investigate the characteristics in tensile strength of transversely isotropic rock, a new anisotropic tensile failure function was suggested. According to the function, the tensile strength is minimum in the normal direction to a weakness plane and rises exponentially to its maximum on a plane perpendicular to the weakness plane. The anisotropic function is defined in terms of three strength parameters which can be identified trom direct tensile tests of transversely isotropic rocks. By incorporating the suggested function into the critical plane approach, a numerical procedure which enables to search the tensile strength and the direction of critical plane at failure was presented. The validity of the suggested numerical procedure was checked through the simulation of direct tensile tests reported in a literature. The numerical results from the simulation were in good agreements with those from the laboratory tests.

Semi-analytical numerical approach for the structural dynamic response analysis of spar floating substructure for offshore wind turbine

  • Cho, Jin-Rae;Kim, Bo-Sung;Choi, Eun-Ho;Lee, Shi-Bok;Lim, O-Kaung
    • Structural Engineering and Mechanics
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2014
  • A semi-analytical numerical approach for the effective structural dynamic response analysis of spar floating substructure for offshore wind turbine subject to wave-induced excitation is introduced in this paper. The wave-induced rigid body motions at the center of mass are analytically solved using the dynamic equations of rigid ship motion. After that, the flexible structural dynamic responses of spar floating substructure for offshore wind turbine are numerically analyzed by letting the analytically derived rigid body motions be the external dynamic loading. Restricted to one-dimensional sinusoidal wave excitation at sea state 3, pitch and heave motions are considered. Through the numerical experiments, the time responses of heave and pitch motions are solved and the wave-induced dynamic displacement and effective stress of flexible floating substructure are investigated. The hydrodynamic interaction between wave and structure is modeled by means of added mass and wave damping, and its modeling accuracy is verified from the comparison of natural frequencies obtained by experiment with a 1/100 scale model.

Case studies for modeling magnetic anomalies with COMSOL Multiphysics® (콤솔 멀티피직스를 활용한 지자기장 모델링 사례 연구)

  • Ha, Goeun;Kim, Seung-Sep
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.6
    • /
    • pp.677-682
    • /
    • 2018
  • Magnetic anomalies are sensitive to magnetic properties present in deep Earth and near surface structures. Such geophysical characteristics often can be quantified by numerical analyses. In this study, we developed a finite element method (FEM) approach to compute magnetic anomalies using COMOL $Multiphysics^{(R)}$. This FEM approach was verified by comparing its numerical results with the previously known analytic solution for a uniformly magnetized sphere. Then, we used the method to compute magnetic reversal patterns near mid-ocean ridge with various faulting scenarios. This COMSOL-based approach can be incorporated into advanced multi-physical numerical models to understand the Earth.

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • Journal of the Korean Society of Combustion
    • /
    • v.12 no.3
    • /
    • pp.8-15
    • /
    • 2007
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially-injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flamelet model.. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the. structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Numerical Modeling of Turbulent Premixed Lifted Flames in Low-Swirl Burner (저 스월 버너에서의 난류 예혼합 부상화염장의 해석)

  • Kang, Sung-Mo;Lee, Jeong-Won;Kim, Yong-Mo;Chung, Jae-Hwa;Ahn, Dal-Hong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.455-458
    • /
    • 2006
  • This study has numerically modelled the combustion processes of the turbulent swirling premixed lifted flames in the low-swirl burner (LSB). In these turbulent swirling premixed flames, the four tangentially- injected air jets induce the turbulent swirling flow which plays the crucial role to stabilize the turbulent lifted flame. In the present approach, the turbulence-chemistry interaction is represented by the level-set based flame let model. Two-dimensional and three-dimensional computations are made for the various swirl numbers and nozzle length. In terms of the centerline velocity profiles and flame liftoff heights, numerical results are compared with experimental data The three-dimensional approach yields the much better conformity with agreements with measurements without any analytic assumptions on the inlet swirl profiles, compared to the two-dimensional approach. Numerical clearly results indicate that the present level-set based flamelet approach has realistically simulated the structure and stabilization mechanism of the turbulent swirling stoichiometric and lean-premixed lifted flames in the low-swirl burner.

  • PDF

Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach

  • Eberhardt, Oliver;Wallmersperger, Thomas
    • Smart Structures and Systems
    • /
    • v.13 no.4
    • /
    • pp.685-709
    • /
    • 2014
  • Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range of possible applications. Since the knowledge of the material behavior is vital regarding the possible applications, experimental and theoretical studies have been conducted to investigate the properties of this promising material. The aim of the present research is the calculation of mechanical properties and of the mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed on basis of a molecular mechanics approach. Within this approach two different issues were taken into account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction in the applied modeling techniques, the results for the Young's modulus for several SWCNTs are presented and are discussed extensively. The obtained numerical results are compared to results available in literature and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different models are given and the resulting differences in the numerical findings are shown. Within the investigation of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent bond are considered. The presented results of this decomposition provide a deeper understanding of the governing deformation mechanisms in SWCNTs.

An Efficient Method for Solving a Multi-Item Newsboy Problem with a Budget-Constraint and a Reservation Policy (예산 제약과 예약 정책이 있는 복수 제품 신문 배달 소년 문제 해결을 위한 효율적 방법론)

  • Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.37 no.1
    • /
    • pp.50-59
    • /
    • 2014
  • In this paper, we develop an efficient approach to solve a multiple-item budget-constraint newsboy problem with a reservation policy. A conventional approach for solving such problem utilizes an approximation for the evaluation of an inverse of a Gaussian cumulative density function when the argument of the function is small, and a heuristic method for finding an optimal Lagrangian multiplier. In contrast to the conventional approach, this paper proposes more accurate method of evaluating the function by using the normalization and an effective numerical integration method. We also propose an efficient way to find an optimal Lagrangian multiplier by proving that the equation for the budget-constraint is in fact a monotonically increasing function in the Lagrangian multiplier. Numerical examples are tested to show the performance of the proposed approach with emphases on the behaviors of the inverse of a Gaussian cumulative density function and the Lagrangian multiplier. By using sensitivity analysis of different budget constraints, we show that the reservation policy indeed provides greater expected profit than the classical model of not having the reservation policy.

Theoretical approach for uncertainty quantification in probabilistic safety assessment using sum of lognormal random variables

  • Song, Gyun Seob;Kim, Man Cheol
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2084-2093
    • /
    • 2022
  • Probabilistic safety assessment is widely used to quantify the risks of nuclear power plants and their uncertainties. When the lognormal distribution describes the uncertainties of basic events, the uncertainty of the top event in a fault tree is approximated with the sum of lognormal random variables after minimal cutsets are obtained, and rare-event approximation is applied. As handling complicated analytic expressions for the sum of lognormal random variables is challenging, several approximation methods, especially Monte Carlo simulation, are widely used in practice for uncertainty analysis. In this study, a theoretical approach for analyzing the sum of lognormal random variables using an efficient numerical integration method is proposed for uncertainty analysis in probability safety assessments. The change of variables from correlated random variables with a complicated region of integration to independent random variables with a unit hypercube region of integration is applied to obtain an efficient numerical integration. The theoretical advantages of the proposed method over other approximation methods are shown through a benchmark problem. The proposed method provides an accurate and efficient approach to calculate the uncertainty of the top event in probabilistic safety assessment when the uncertainties of basic events are described with lognormal random variables.

A numerical model for masonry implemented in the framework of a discrete formulation

  • Nappi, A.;Tin-Loi, F.
    • Structural Engineering and Mechanics
    • /
    • v.11 no.2
    • /
    • pp.171-184
    • /
    • 2001
  • A direct discrete formulation suitable for the nonlinear analysis of masonry structures is presented. The numerical approach requires a pair of dual meshes, one for describing displacement fields, one for imposing equilibrium. Forces and displacements are directly used (instead of having to resort to a model derived from a set of differential equations). Associated and nonassociated flow laws are dealt with within a complementarity framework. The main features of the method and of the relevant computer code are discussed. Numerical examples are presented, showing that the numerical approach is able to describe plastic strains, damage effects and crack patterns in masonry structures.

A computational approach to the simulation of controlled flows by synthetic jets actuators

  • Ferlauto, Michele;Marsilio, Roberto
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.1
    • /
    • pp.77-94
    • /
    • 2015
  • The paper focuses on the integration of a non-linear one-dimensional model of Synthetic Jet (SJ) actuator in a well-assessed numerical simulation method for turbulent compressible flows. The computational approach is intended to the implementation of a numerical tool suited for flow control simulations with affordable CPU resources. A strong compromise is sought between the use of boundary conditions or zero-dimensional models and the full simulation of the actuator cavity, in view of long-term simulation with multiple synthetic jet actuators. The model is integrated in a multi-domain numerical procedure where the controlled flow field is simulated by a standard CFD method for compressible RANS equations, while flow inside the actuator is reduced to a one-dimensional duct flow with a moving piston. The non-linear matching between the two systems, which ensures conservation of the mass, momentum and energy is explained. The numerical method is successfully tested against three typical test cases: the jet in quiescent air, the SJ in cross flow and the flow control on the NACA0015 airfoil.