Browse > Article
http://dx.doi.org/10.12989/sss.2014.13.4.685

Mechanical properties and deformation behavior of carbon nanotubes calculated by a molecular mechanics approach  

Eberhardt, Oliver (Institut fur Festkorpermechanik, Technische Universitat Dresden)
Wallmersperger, Thomas (Institut fur Festkorpermechanik, Technische Universitat Dresden)
Publication Information
Smart Structures and Systems / v.13, no.4, 2014 , pp. 685-709 More about this Journal
Abstract
Carbon nanotubes are due to their outstanding mechanical properties destined for a wide range of possible applications. Since the knowledge of the material behavior is vital regarding the possible applications, experimental and theoretical studies have been conducted to investigate the properties of this promising material. The aim of the present research is the calculation of mechanical properties and of the mechanical behavior of single wall carbon nanotubes (SWCNTs). The numerical simulation was performed on basis of a molecular mechanics approach. Within this approach two different issues were taken into account: (i) the nanotube geometry and (ii) the modeling of the covalent bond. The nanotube geometry is captured by two different approaches, the roll-up and the exact polyhedral model. The covalent bond is modeled by a structural molecular mechanics approach according to Li and Chou. After a short introduction in the applied modeling techniques, the results for the Young's modulus for several SWCNTs are presented and are discussed extensively. The obtained numerical results are compared to results available in literature and show an excellent agreement. Furthermore, deviations in the geometry stemming from the different models are given and the resulting differences in the numerical findings are shown. Within the investigation of the deformation mechanisms occurring in SWCNTs, the basic contributions of each individual covalent bond are considered. The presented results of this decomposition provide a deeper understanding of the governing deformation mechanisms in SWCNTs.
Keywords
carbon nanotube; single wall nanotube; molecular mechanics; mechanical properties; modeling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cornell, W.D., Cieplak, P., Bayly, C.I., Gould, I.R., Merz, K.M., Ferguson, D.M., Spellmeyer, D.C., Fox, T., Caldwell, J.W. and Kollman, P.A. (1995), "A second generation force field for the simulation of proteins, nucleic acids, and organic molecules", J. Am. Chem. Soc., 117(19), 5179-5197.   DOI   ScienceOn
2 Baughman, R.H., Cui, C., Zakhidov, A.A., Iqbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S. and Kertesz, M. (1999), "Carbon nanotube actuators", Science, 284(5418), 1340-1344.   DOI   ScienceOn
3 Chandraseker, K. and Mukherjee, S. (2007), "Atomistic-continuum and ab initio estimation of the elastic moduli of single-walled carbon nanotubes", Comput. Mater. Sci., 40(1), 147 -158.   DOI   ScienceOn
4 Chen, W.H., Cheng, H.C. and Liu, Y.L. (2010), "Radial mechanical properties of single-walled carbon na-notubes using modified molecular structure mechanics", Comput. Mater. Sci., 47(4), 985-993.   DOI   ScienceOn
5 Cinefra, M., Carrera, E. and Brischetto, S. (2011), "Refined shell models for the vibration analysis of multiwalled carbon nanotubes", Mech. Adv. Mater. Str., 18(7), 476-483.   DOI   ScienceOn
6 Cox, B.J. and Hill, J.M. (2007), "Exact and approximate geometric parameters for carbon nanotubes incorpo- rating curvature", Carbon, 45(7), 1453 - 1462.   DOI   ScienceOn
7 Dresselhaus, M., Dresselhaus, G. and Saito, R. (1995), "Physics of carbon nanotubes", Carbon, 33(7), 883-891.   DOI   ScienceOn
8 Giannopoulos, G., Kakavas, P. and Anifantis, N. (2008), "Evaluation of the effective mechanical properties of single walled carbon nanotubes using a spring based finite element approach", Comput. Mater. Sci., 41(4), 561 - 569.   DOI   ScienceOn
9 Hernandez, E., Goze, C., Bernier, P. and Rubio, A. (1998), "Elastic properties of C and BxCy Nz composite nanotubes", Phys. Rev. Lett., 80(20), 4502-4505.   DOI   ScienceOn
10 Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354, 56.   DOI
11 Iijima, S. and Ichihashi, T. (1993), "Single-shell carbon nanotubes of 1-nm diameter", Nature, 363, 603-605.   DOI   ScienceOn
12 Lu, W., Zu, M., Byun, J.H., Kim, B.S. and Chou, T.W. (2012), "State of the art of carbon nanotube fibers: opportunities and challenges", Adv. Mater., 24(14), 1805-1833.   DOI   ScienceOn
13 Kudin, K.N., Scuseria, G.E. and Yakobson, B.I. (2001), "C2F, BN, and C nanoshell elasticity from ab initio computations", Phys. Rev. B., 64(23), 235406.   DOI   ScienceOn
14 Muc, A. (2010), "Design and identification methods of effective mechanical properties for carbon nanotubes", Mater. Design, 31(4), 1671-1675.   DOI   ScienceOn
15 Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solids Struct., 40(10), 2487-2499.   DOI   ScienceOn
16 Meo, M. and Rossi, M. (2006), "Prediction of Young's modulus of single wall carbon nanotubes by molecular- mechanics based finite element modelling", Compos. Sci. Technol., 66(11-12), 1597-1605.   DOI   ScienceOn
17 Odegard, G.M., Gates, T.S., Nicholson, L.M. and Wise, K.E. (2002), "Equivalent-continuum modeling of nano-structured materials", Compos. Sci. Technol., 62, 1869-1880.   DOI   ScienceOn
18 Radushkevich, L.V. and Lukyanovich, V.M. (1952), "About the structure of carbon formed by thermal decomposition of carbon monoxide on iron substrate", J. Phys. Chem.(Moscow), 26, 88-95.
19 Sanchez-Portal, D., Artacho, E., Soler, J.M., Rubio, A. and Ordejon, P. (1999), "Ab initio structural, elastic, and vibrational properties of carbon nanotubes", Phys. Rev. B, 59(19), 12678-12688.   DOI   ScienceOn
20 Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Geerligs, L.J. and Dekker, C. (1997), "Individual single-wall carbon nanotubes as quantum wires", Nature, 386, 474-477.   DOI   ScienceOn
21 Tserpes, K. and Papanikos, P. (2005), "Finite element modeling of single-walled carbon nanotubes", Compos. Part B., 36(5), 468-477.   DOI   ScienceOn
22 Theodosiou, T. and Saravanos, D. (2007), "Molecular mechanics based finite element for carbon nanotube modeling", Comput. Model. Eng. Sci., 19(2), 121-134.
23 Thostenson, E.T., Ren, Z. and Chou, T.W. (2001), "Advances in the science and technology of carbon nanotubes and their composites: a review", Compos. Sci. Technol., 61(13), 1899 -1912.   DOI   ScienceOn
24 Treacy, M.M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381, 678- 680.   DOI   ScienceOn
25 Wu, Y., Huang, M., Wang, F., Huang, X.M.H., Rosenblatt, S., Huang, L., Yan, H., O'Brien, S.P., Hone, J. and Heinz, T.F. (2008), "Determination of the Young's modulus of structurally defined carbon nanotubes", Nano Lett., 8(12), 4158-4161.   DOI   ScienceOn
26 Wu, C.J., Chou, C.Y., Han, C.N. and Chiang, K.N. (2009), "Estimation and validation of elastic modulus of carbon nanotubes using nano-scale tensile and vibrational analysis", Comput. Model. Eng. Sci., 41(1), 49-67.
27 Foroughi, J., Spinks, G.M., Wallace, G.G., Oh, J., Kozlov, M.E., Fang, S., Mirfakhrai, T., Madden, J.D.W., Shin, M.K., Kim, S.J. and Baughman, R.H. (2011), "Torsional carbon nanotube artificial muscles", Science, 334(6055), 494-497.   DOI   ScienceOn
28 Berber, S., Kwon, Y.K. and Tomanek, D. (2000), "Unusually high thermal conductivity of carbon nanotubes", Phys. Rev. Lett., 84, 4613-4616.   DOI   ScienceOn