• Title/Summary/Keyword: numerical analysis model

Search Result 7,859, Processing Time 0.042 seconds

Verification of Applicability of Buried GFRP Pipe through Model Test and Numerical Analysis (실내모형실험과 수치해석을 통한 지중매설된 GFRP관의 거동 특성)

  • Kwon, Hyuk-Joon;Yoon, Myung-June;Kim, Jin-Hyun;Lee, Myung-Jae;Kim, Hong-Taek
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1050-1059
    • /
    • 2010
  • The GFRP(Glass-Fiber Reinforced Plastic) Pipe is designed to behave safely against the external forces and to secure stability of deformation and settlements in pipe, Since it is laid under the ground. In this syudy, the evaluation for stability was carried out by performing the preliminary numerical analysis to decide the sclae effect in case of indoor model test. As a result of, strain of laying pipes is preponderantly reviewed. Numerical analysis is conducted to evaluate on the field application through the comparison concerning relations between deformation and differential settlement in the GFRP and hume pipes.

  • PDF

Centrifuge Modeling and Numerical Analysis on Breakwater Construction (방파제 축조공사의 Centrifuge 모델링과 수치해석)

  • Yoo, Nam-Jae;Kim, Dong-Gun;Yoon, Dae-Hee
    • Journal of Industrial Technology
    • /
    • v.31 no.B
    • /
    • pp.81-90
    • /
    • 2011
  • Centrifuge modeling and numerical analysis on works of breakwater construction were performed to investigate the behavior of caisson type of breakwater and foundation treated with the method of DCM (Deep Cement Mixing) under the condition of wave action in field. In centrifuge modeling, construction sequence of breakwater caisson such as preparation of ground, treatment of DCM, installation of rubble mound, placement of breakwater caisson and lateral loading on the breakwater due to wave action were reconstructed. Lateral movement of model breakwater and ground reaction in the vertical direction were monitored during test. Stress concentration ratio between the untreated ground and the treated ground with DCM was evaluated from measurement of vertical stresses on each ground. Numerical analysis with the software of PLAXIS was carried to compare with Results of centrifuge model test. It was found that stability of model breakwater was maintained during stage of construction and the compared results about stress concentration ratio were in relatively good agreements.

  • PDF

Numerical analysis of interference galloping of two identical circular cylinders

  • Blazik-Borowa, E.;Flaga, A.
    • Wind and Structures
    • /
    • v.1 no.3
    • /
    • pp.243-253
    • /
    • 1998
  • The paper deals with numerical analysis of interference galloping of two elastically supported circular cylinders of equal diameters. The basis of the analysis is quasi-steady model of this phenomenon. The model assumes that both cylinders participate in process of interference galloping and they have two degrees of freedom. The movement of the cylinders is written as a set of four nonlinear differential equations. On the basis of numerical solutions of this equations the authors evaluate the correctness of this quasi-steady model. Then they estimate the dependence of a critical reduced velocity on the Scruton number, turbulence intensity and arrangements of the cylinders.

A GUIDE FOR NUMERICAL WIND TUNNEL ANALYSIS IN ORDER TO PREDICT WIND LOAD ON A BUILDING (건축물의 풍하중을 예측하기 위한 수치풍동기법)

  • Lee, Mung-Sung;Lee, June-Hee;Hur, Nahm-Keon;Choi, Chang-Koon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.5-9
    • /
    • 2010
  • A numerical wind tunnel simulation is performed in order to predict wind loads acting on a building. The aim of the present study is to suggest a guideline for the numerical wind tunnel analysis, which could provide more detail wind load distributions compared to the wind code and expensive wind tunnel experiments. To validate the present numerical simulation, wind-induced loads on a 6 m cube model is predicted. Atmospheric boundary layer is used as a inlet boundary condition. Various effect of numerical methods are investigated such as size of computational domain, grid density, turbulence model and discretization scheme. The appropriate procedure for the numerical wind tunnel analysis is suggested through the present study.

  • PDF

A Study on the Estimation of the Effective Wake Ratio for ONR Tumblehome by the Numerical Analysis (수치해석을 활용한 ONR Tumblehome의 유효반류비 추정에 관한 연구)

  • Lee, Jun-Hee;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.2
    • /
    • pp.109-116
    • /
    • 2019
  • This paper carried out numerical analysis for estimating the propulsion performance of the model scale ONRT benchmark model of'Tokyo 2015 a workshop on CFD'. The method reflecting the scale effect of ITTC'78 method and form factor were used to compare the estimates of the effective wake ratio of full-scale. The numerical calculation was performed with Siemens's Star-CCM+, compared with IIHR model tests and the numerical analysis results of other research institutes, showing good agreement. In the case of an open stern and twin skeg ship, the validity of the ITTC'78 method can be confirmed by assuming that the effective wake ratio estimated from the numerical analysis results of model scale is similar to the effective wake ratio of full-scale.

FE model updating and seismic performance evaluation of a historical masonry clock tower

  • Gunaydin, Murat;Erturk, Esin;Genc, Ali Fuat;Okur, Fatih Yesevi;Altunisik, Ahmet Can;Tavsan, Cengiz
    • Earthquakes and Structures
    • /
    • v.22 no.1
    • /
    • pp.65-82
    • /
    • 2022
  • This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

Analytic and Numerical Study for air Bubble Defect of UV-NIL Process (UV-NIL 공정의 기포 결함에 대한 해석적 및 수치적 연구)

  • Seok, Jeong-Min;Kim, Nam-Woong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.473-478
    • /
    • 2012
  • In this paper, the air bubble formation mechanism in the rectangular and triangular line-and-space pattern during dispensing UV Nanoimprint Lithography (UV-NIL) at an atmospheric condition is studied. To investigate the air bubble formation, an analytic model based on geometric approach and a numerical model based on CFD(computational fluid dynamics) were used in the analysis. It was found in the numerical analysis that every time the flow front passed through a corner of the pattern, it proceeded with a newly formed shape, occurring due to interface reconfiguration, since the flow fronts were formed such that they minimized the surface energy. Moreover, the conditions for the air bubble formation were investigated by applying the analytic analysis based on geometric approach and the numerical analysis. Good overall agreement was found between the analytic and numerical analysis.

Dynamic Analysis of Riser with Vortex Excitation by Coupled Wake Oscillator Model (연계 후류진동 모델 적용을 통한 와류방출 가진에 의한 라이저의 동적해석)

  • 홍남식;허택녕
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.12 no.3
    • /
    • pp.109-115
    • /
    • 2000
  • Numerical model is proposed to estimate dynamic responses of riser with vortex excitation by inline current. Galerkin's finite decomposition method is implemented for the development of a numerical model and vortex excitation is modeled by coupled wake oscillator proposed by Blevins. The numerical results are inspected through the physical interpretation to give the verification and usefulness of the suggested numerical model.

  • PDF

Experimental and numerical modeling of uplift behavior of rectangular plates in cohesionless soil

  • Niroumand, Hamed;Kassim, Khairul Anuar
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.341-358
    • /
    • 2014
  • Uplift response of rectangular anchor plates has been investigated in physical model tests and numerical simulation using Plaxis. The behavior of rectangular plates during uplift test was studied by experimental data and finite element analyses in cohesionless soil. Validation of the analysis model was also carried out with 200 mm and 300 mm diameter of rectangular plates in sand. Agreement between the uplift responses from the physical model tests and finite element modeling using PLAXIS 2D, based on 200 mm and 300 mm computed maximum displacements were excellent for rectangular anchor plates. Numerical analysis using rectangular anchor plates was conducted based on hardening soil model (HSM). The research has showed that the finite element results gives higher than the experimental findings in dense and loose packing of cohesionless soil.