Browse > Article
http://dx.doi.org/10.12989/eas.2022.22.1.065

FE model updating and seismic performance evaluation of a historical masonry clock tower  

Gunaydin, Murat (Karadeniz Technical University, Department of Civil Engineering)
Erturk, Esin (Karadeniz Technical University, Department of Civil Engineering)
Genc, Ali Fuat (Karadeniz Technical University, Department of Civil Engineering)
Okur, Fatih Yesevi (Karadeniz Technical University, Department of Civil Engineering)
Altunisik, Ahmet Can (Karadeniz Technical University, Department of Civil Engineering)
Tavsan, Cengiz (Karadeniz Technical University, Department of Civil Engineering)
Publication Information
Earthquakes and Structures / v.22, no.1, 2022 , pp. 65-82 More about this Journal
Abstract
This paper presents a structural performance assessment of a historical masonry clock tower both using numerical and experimental process. The numerical assessment includes developing of finite element model with considering different types of soil-structure interaction systems, identifying the numerical dynamic characteristics, finite element model updating procedure, nonlinear time-history analysis and evaluation of seismic performance level. The experimental study involves determining experimental dynamic characteristics using operational modal analysis test method. Through the numerical and experimental processes, the current structural behavior of the masonry clock tower was evaluated. The first five experimental natural frequencies were obtained within 1.479-9.991 Hz. Maximum difference between numerical and experimental natural frequencies, obtained as 20.26%, was reduced to 4.90% by means of the use of updating procedure. According to the results of the nonlinear time-history analysis, maximum displacement was calculated as 0.213 m. The maximum and minimum principal stresses were calculated as 0.20 MPa and 1.40 MPa. In terms of displacement control, the clock tower showed only controlled damage level during the applied earthquake record.
Keywords
clock tower; dynamic characteristics; FE model updating; historical masonry structures; operational modal analysis; soil-structure interaction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Corum Baris Sehri (2018), Corum Il Kultur ve Turizm Mudurlugu, http://www.corum.gov.tr/kurumlar/corum.gov.tr/Genel/corum_tanitim/gezirehberi.pdf.
2 Brownjohn, J.M., Xia, P.Q., Hao, H. and Xia, Y. (2001), "Civil structure condition assessment by FE model updating: Methodology and case studies", Finite Elem. Anal. Des., 37(10), 761-775. https://doi.org/10.1016/S0168-874X(00)00071-8.   DOI
3 Peeters, B. and De Roeck, G. (1999), "Reference based stochastic subspace identification in civil engineering", Proceedings of the 2nd International Conference on Identification in Engineering Systems, Swansea, UK.
4 Pena, F., Lourenco, P.B., Mendes, N. and Oliveira, D.V. (2010), "Numerical models for the seismic assessment of an old masonry tower", Eng. Struct., 32(5), 1466-1478. https://doi.org/10.1016/j.engstruct.2010.01.027.   DOI
5 PULSE, A. and Solutions, R. (2006), 11.2, Bruel & Kjaer, Sound Vib. Meas. A/S, Denmark.
6 Rainieri, C., Fabbrocino, G., Cosenza, E. and Manfredi, G. (2007), "Implementation of OMA procedures using labview: Theory and application". 2nd International Operational Modal Analysis Conference, Copenhagen, Denmark.
7 General Directorate for Foundations (2018), Turkey Earthquake Building Code, TEBC-2018, Ankara, Turkey.
8 Nohutcu, H., Hokelekli, E., Ercan, E., Demir, A. and Altintas, G. (2017), "Collapse mechanism estimation of a historical slender minaret", Struct. Eng. Mech., 64(5), 653-660. https://doi.org/10.12989/sem.2017.64.5.653.   DOI
9 Butt, F. and Omenzetter, P. (2014), "Seismic response trends evaluation and finite element model calibration of an instrumented RC building considering soil-structure interaction and non-structural components", Eng. Struct., 65, 111-123. https://doi.org/10.1016/j.engstruct.2014.01.045.   DOI
10 Carpinteri, A., Invernizzi, S. and Lacidogna, G. (2005), "In situ damage assessment and nonlinear modelling of a historical masonry tower", Eng. Struct., 27(3), 387-395. https://doi.org/10.1016/j.engstruct.2004.11.001.   DOI
11 Ramos, L.F., Aguilar, R. and Lourenco, P.B. (2011), "Operational modal analysis of historical constructions using commercial wireless platforms", Struct. Health Monit., 10(5), 511-521. https://doi.org/10.1177/1475921710388973.   DOI
12 Ren, W.X., Penga, X. and Lina, Y. (2005), "Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge", Eng. Struct., 27(4), 535-548. https://doi.org/10.1016/j.engstruct.2004.11.013.   DOI
13 Resta, M., Fiore, A. and Monaco, P. (2013), "Non-linear finite element analysis of masonry towers by adopting the damage plasticity constitutive model", Adv. Struct. Eng., 16(5), 791-803. https://doi.org/10.1260/1369-4332.16.5.791.   DOI
14 Romero, M., Pachon, P., Compan, V., Camara, M. and Pinto, F. (2018), "Operational modal analysis: A tool for assessing changes on structural health state of historical constructions after consolidation and reinforcement works-Jura Chapel (Jerez De La Frontera, Spain)", Shock Vib., 2018, 1-12. https://doi.org/10.1155/2018/3710419.   DOI
15 Gentile, C. and Saisi, A. (2007), "Ambient vibration testing of historic masonry towers for structural identification and damage assessment", Constr. Build. Mater., 21(6), 1311-1321. https://doi.org/10.1016/j.conbuildmat.2006.01.007.   DOI
16 Saloustros, S., Pela, L., Roca, P. and Portal, J. (2015), "Numerical analysis of structural damage in the church of the Poblet monastery", Eng. Fail. Anal., 48, 41-61. https://doi.org/10.1016/j.engfailanal.2014.10.015.   DOI
17 Damci, E., Temur, R., Bekdas, G. and Sayin, B. (2015), "Damages and causes on the structures during the October 23, 2011 Van earthquake in Turkey", Case Stud. Constr. Mater., 3,112-131. https://doi.org/10.1016/j.cscm.2015.10.001.   DOI
18 Ewins, D.J. (1984), Modal Testing: Theory and Practice, Letchworth, Hertfordshire, England, Research Studies Press, New York.
19 Felber, A.J. (1993), "Development of hybrid bridge evaluation system", Ph.D. Thesis, University of British Columbia, Vancouver, Canada.
20 General Directorate for Foundations (2017), Guide to the Management of Earthquake Risks of Historical Structures, Ankara, Turkey.
21 Gunaydin, M., Adanur, S. and Altunisik, A.C. (2019), "Experimental investigation on acceptable difference value in modal parameters for model updating using RC building models", Struct. Eng. Int., 29(1), 150-159. https://doi.org/10.1080/10168664.2018.1517019.   DOI
22 Gunaydin, M., Adanur, S., Altunisik, A.C., Sevim, B. and Bayraktar, A. (2017), "Finite modeling updating effects on the dynamic response of building models", J. Test. Eval., 45(5), 2017,1630-1649. https://doi.org/10.1520/JTE20150515.   DOI
23 Ceroni, F., Sica, S., Pecce, M.R. and Garofano, A. (2014), "Evaluation of the natural vibration frequencies of a historical masonry building accounting for SSI", Soil Dynam. Earthq. Eng., 64, 95-101. https://doi.org/10.1016/j.soildyn.2014.05.003.   DOI
24 Lee, J. and Fenves, G.L. (1998), "A plastic-damage concrete model for earthquake analysis of dams", Earthq. Eng. Struct. Dynam., 27(9), 937-956. https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5.   DOI
25 Hokelekli, E. and Al-Helwani, A. (2019), "Effect of soil properties on the seismic damage assessment of historical masonry minaret-soil interaction systems", Struct. Des. Tall Spec., 29(2). https://doi.org/10.1002/tal.1694.   DOI
26 Garcia-Macias, E. and Ubertini, F. (2020), "Automated operational modal analysis and ambient noise deconvolution interferometry for the full structural identification of historic towers: A case study of the Sciri Tower in Perugia, Italy", Eng. Struct., 215, 110615. https://doi.org/10.1016/j.engstruct.2020.110615.   DOI
27 Republic of Turkey Prime Ministry Disaster and Emergency Management Authority Presidential of Earthquake Department (2018), https://deprem.afad.gov.tr/depremkatalogu#.
28 Jacobsen, N.J., Andersen, P. and Brincker, R. (2006), "Using enhanced frequency domain decomposition as a robust technique to harmonic excitation in operational modal analysis", Proceedings of ISMA2006: International Conference on Noise & Vibration Engineering, Leuven, Belgium.
29 Juang, J.N. (1994), Applied System Identification, Englewood Cliffs (NJ): Prentice-Hall Inc.
30 Kramer, S.L. (1999), Geotechnical Earthquake Engineering, University of Washington, U.S.A.
31 Leger, P. and Boughoufalah, M. (1989), "Earthquake input mechanisms for time-domain analysis of dam-foundation systems", Eng. Struct., 11(1), 37-46. https://doi.org/10.1016/0141-0296(89)90031-X.   DOI
32 Li, T. and Atamturktur, S. (2014), "Fidelity and robustness of detailed micromodeling, simplified micromodeling, and macromodeling techniques for a masonry dome", J. Perform. Constr. Fac., 28(3), 480-490. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000440.   DOI
33 Bayraktar, A., Hokelekli, E., Halifeoglu, F.M., Mosallam, A. and Karadeniz, H. (2018), "Vertical strong ground motion effects on seismic damage propagations of historical masonry rectangular minarets", Eng. Fail. Anal., 91, 115-128. https://doi.org/10.1016/j.engfailanal.2018.04.029.   DOI
34 Jain, A., Acito, M. and Chesi, C. (2020), "Seismic sequence of 2016-17: Linear and non-linear interpretation models for evolution of damage in San Francesco Church, Amatrice", Eng. Struct., 211, 397-421. https://doi.org/10.1016/j.engstruct.2020.110418.   DOI
35 Aras, F., Krstevska, L., Altay, G. and Tashkov, L. (2011), "Experimental and numerical modal analyses of a historical masonry palace", Constr. Build. Mater., 25(1), 81-91. https://doi.org/10.1016/j.conbuildmat.2010.06.054.   DOI
36 Bayraktar, A. and Hokelekli, E. (2020), "Influences of earthquake input models on nonlinear seismic performances of minaret-foundation-soil interaction systems", Soil Dynam. Earthq. Eng., 139, 106368. https://doi.org/10.1016/j.soildyn.2020.106368.   DOI
37 Bayraktar, A., Turker, T., Sevim, B., Altunisik, A.C. and Yildirim, F. (2009), "Modal parameter identification of Hagia Sophia bell-tower via ambient vibration test", J. Nondestruct. Eval., 28(1), 37-47. https://doi.org/10.1007/s10921-009-0045-9.   DOI
38 Sanayei, M. and Rohela, P. (2014), "Automated finite element model updating of full-scale structures with PARameter Identification System (PARIS)", Adv. Eng. Softw., 67, 99-110. https://doi.org/10.1016/j.advengsoft.2013.09.002.   DOI
39 Turek, M., Ventura, C.E. and Placencia, P. (2002), "Dynamic characteristics of a 17th century church in Quito, Ecuador", Proceedings of SPIE, 4753(2), 1259-1264.
40 Bayraktar, A., Turker, T. and Altunisik, A.C. (2015), "Experimental frequencies and damping ratios for historical masonry arch bridges", Constr. Build. Mater., 75, 234-241. https://doi.org/10.1016/j.conbuildmat.2014.10.044.   DOI
41 Bendat, J.S. and Piersol, A.G. (2004), Random Data: Analysis and Measurement Procedures, John Wiley and Sons, U.S.A.
42 Betti, M. and Vignoli, A. (2008), "Modelling and analysis of a Romanesque church under earthquake loading: Assessment of seismic resistance", Eng. Struct., 30(2), 352-367. https://doi.org/10.1016/j.engstruct.2007.03.027.   DOI
43 Betti, M. and Vignoli, A. (2011), "Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all'Impruneta (Italy)", Constr. Build. Mater., 25(12), 4308-4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028.   DOI
44 Brown, S., Hwang, J.P. and Parker, A. (2012), "Assessment of masonry bell tower response to bell ringing using operational modal analysis and numerical modeling", Proceedings of Acoustics.
45 Sevim, B, Bayraktar, A., Altunisik, A.C., Atamturktur, S. and Birinci, F. (2011), "Assessment of nonlinear seismic performance of a restored historical arch bridge using ambient vibrations", Nonlinear Dynam., 63(4), 755-770. https://doi.org/10.1007/s11071-010-9835-y.   DOI
46 Wu, J.R. and Li, Q.S. (2004), "Finite element model updating for a high-rise structure based on ambient vibration measurements", Eng. Struct., 26(7), 979-990. https://doi.org/10.1016/j.engstruct.2004.03.002.   DOI
47 Sorour, M.M., Parsekian, G.A., Duchesne, D., Paquette, J., Mufti, A., Jaeger, L. and Shrive, N.G. (2009), "Evaluation of Young's modulus for stone masonry walls under compression", 11th Canadian Masonry Symposium, Toronto, Ontario.
48 Tiberti, S., Acito, M. and Milani, G. (2016), "Comprehensive FE numerical insight into Finale Emilia Castle behavior under 2012 Emilia Romagna seismic sequence: Damage causes and seismic vulnerability mitigation hypothesis", Eng. Struct., 117, 397-421. https://doi.org/10.1016/j.engstruct.2016.02.048.   DOI
49 Votsis, R.A., Kyriakides, N., Chrysostomou, C.Z., Tantele, E. and Demetriou, T. (2012), "Ambient vibration testing of two masonry monuments in Cyprus", Soil Dynam. Earthq. Eng., 43, 58-68. https://doi.org/10.1016/j.soildyn.2012.07.015.   DOI
50 Jain, A., Acito, M., Chesi, C. and Magrinelli, E. (2019), "The seismic sequence of 2016-2017 in Central Italy: A numerical insight on the survival of the Civic Tower in Amatrice", B. Earthq. Eng., 18, 1371-1400. https://doi.org/10.1007/s10518-019-00750-w.   DOI
51 Saisi, A., Gentile, C. and Guidobaldi, M. (2015), "Post-earthquake continuous dynamic monitoring of the Gabbia Tower in Mantua, Italy", Constr. Build. Mater., 81, 101-112. https://doi.org/10.1016/j.conbuildmat.2015.02.010.   DOI
52 Mohammadnezhad, H., Ghaemian, M. and Noorzad, A. (2019), "Seismic analysis of dam-foundation-reservoir system including the effects of foundation mass and radiation damping", Earthq. Eng. Eng. Vib., 18(1), 203-218. https://doi.org/10.1007/s11803-019-0499-4.   DOI
53 Lourenco, P.B. (1996), "Computational strategies for masonry structures", Ph.D. Thesis, Delft University of Technology, Delft, Netherland.
54 Lourenco, P.B. (2002), "Computations on historic masonry structures", Prog. Struct. Eng. Mater., 4(3), 301-319. https://doi.org/10.1002/pse.120.   DOI
55 Lubliner, J., Oliver, J., Oller, S. and Onate, E. (1989), "A plastic-damage model for concrete", Int. J. Solids Struct., 25(3), 299-326. https://doi.org/10.1016/0020-7683(89)90050-4.   DOI
56 Peeters, B. (2000), "System identification and damage detection in civil engineering", Ph.D. Thesis, Catholic University of Leuven, Leuven, Belgium.
57 Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Adanur, S. (2018c), "Automated model updating of historical masonry structures based on ambient vibration measurements", J. Perform. Constr. Fac., 32(1), 04017126. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001108.   DOI
58 Bolhassani, M., Hamid, A.A., Lau, A.C.W. and Moon, F. (2015), "Simplifed micro modeling of partially grouted masonry assemblages", Constr. Build. Mater., 83, 159-173. https://doi.org/10.1016/j.conbuildmat.2015.03.021.   DOI
59 Nohutcu, H. (2019), "Seismic failure pattern prediction in a historical masonry minaret under different earthquakes", Adv. Civil Eng., 2019(1), 1-16. https://doi.org/10.1155/2019/8752465.   DOI
60 OMA (2006), Release 4.0, Structural Vibration Solution A/S, Denmark.
61 Adanur, S. (2010), "Performance of masonry buildings during the 20 and 27 December 2007 Bala (Ankara) earthquakes in Turkey", Nat. Hazard. Earth. Sys., 10(12), 2547-2556. https://doi.org/10.5194/nhess-10-2547-2010.   DOI
62 Allemang, R.J. (2003), "The modal assurance criterion: Twenty years of use and abuse", Sound Vib., 37(8), 14-23.
63 Altunisik, A.C., Genc, A.F., Gunaydin, M., Adanur, S. and Okur, F.Y. (2018a), "Ambient vibration-based system identification of a medieval masonry bastion for health assessment using nonlinear analyses", Int. J. Nonlinear Sci., 19(2), 107-124. https://doi.org/10.1515/ijnsns-2017-0004.   DOI
64 Altunisik, A.C., Okur, F.Y., Genc, A.F., Gunaydin, M. and Karahasan, O. (2018d), "Automated model updating effect on the linear and nonlinear dynamic responses of historical masonry structures", Exp. Tech., 42(6), 605-621. https://doi.org/10.1007/s40799-018-0271-0.   DOI
65 Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2017), "An investigation of the seismic behaviour of an ancient masonry bastion using non-destructive and numerical methods", Exp. Mech., 57, 245-259. https://doi.org/10.1007/s11340-016-0239-x.   DOI
66 Altunisik, A.C., Adanur, S., Genc, A.F., Gunaydin, M. and Okur, F.Y. (2016), "Non-destructive testing of an ancient masonry bastion", J. Cult. Herit., 22, 1049-1054. https://doi.org/10.1016/j.culher.2016.05.008.   DOI
67 Altunisik, A.C., Genc, A.F., Gunaydin, M., Okur, F.Y. and Karahasan, O.S. (2018b), "Dynamic response of a historical armory building using the finite element model validated by the ambient vibration test", J. Vib. Control, 24(22), 5472-5484. https://doi.org/10.1177/1077546318755559.   DOI
68 Abaqus (2016), Dassault syst'emes simulia corp, Providence: Rhode Island, U.S.A.