• Title/Summary/Keyword: numerical algorithms

Search Result 913, Processing Time 0.024 seconds

Performance and structural analysis of a radial inflow turbine for the organic Rankine cycle (유기랭킨사이클용 반경류 터빈의 성능 및 구조 해석)

  • Kim, Do-Yeop;Kim, You-Taek
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.6
    • /
    • pp.484-492
    • /
    • 2016
  • The turbine is an important component and has a significant impact on the thermodynamic efficiency of the organic Rankine cycle. A precise preliminary design is essential to developing efficient turbines. In addition, performance analysis and structural analysis are needed to evaluate the performance and structural safety. However, there are only a few exclusive studies on the development process of the radial inflow turbines for the organic Rankine cycle (ORC). In this study, a preliminary design of the ORC radial inflow turbine was performed. Subsequently, the performance and structural analysis were also carried out. The RTDM, which was developed as an in-house code, was used in the preliminary design process. The results of the performance analysis were found to be in good agreement with target performances. Structural analysis of the designed turbine was also carried out in order to determine whether the material selection for this study is suitable for the flow conditions of the designed turbine, and it was found that the selected aluminum alloy is suitable for the designed turbine. However, the reliability of the preliminary design algorithms and numerical methods should be strictly verified by an actual experimental test.

Solution Algorithms for Logit Stochastic User Equilibrium Assignment Model (확률적 로짓 통행배정모형의 해석 알고리듬)

  • 임용택
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.2
    • /
    • pp.95-105
    • /
    • 2003
  • Because the basic assumptions of deterministic user equilibrium assignment that all network users have perfect information of network condition and determine their routes without errors are known to be unrealistic, several stochastic assignment models have been proposed to relax this assumption. However. it is not easy to solve such stochastic assignment models due to the probability distribution they assume. Also. in order to avoid all path enumeration they restrict the number of feasible path set, thereby they can not preciously explain the travel behavior when the travel cost is varied in a network loading step. Another problem of the stochastic assignment models is stemmed from that they use heuristic approach in attaining optimal moving size, due to the difficulty for evaluation of their objective function. This paper presents a logit-based stochastic assignment model and its solution algorithm to cope with the problems above. We also provide a stochastic user equilibrium condition of the model. The model is based on path where all feasible paths are enumerated in advance. This kind of method needs a more computing demand for running the model compared to the link-based one. However, there are same advantages. It could describe the travel behavior more exactly, and too much computing time does not require than we expect, because we calculate the path set only one time in initial step Two numerical examples are also given in order to assess the model and to compare it with other methods.

Abnormal Response Analysis of a Cable-Stayed Bridge using Gradual Bilinear Method (Gradual Bilinear Method를 이용한 사장교의 케이블 손상응답 해석)

  • Kim, Byeong-Cheol;Park, Ki-Tae;Kim, Tae-Heon;Hwang, Ji-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.60-71
    • /
    • 2014
  • Cable-stayed bridge, which is one of the representative long-spanned bridge, needs prompt maintenances when a stay cable is damaged because it may cause structural failure of the entire bridge. Many researches are being conducted to develop abnormal behavior detection algorithms for the purpose of shortening the reaction time after the occurrence of structural damage. To improve the accuracy of the damage detection algorithm, ample observation data from various kinds of damage responses is needed. However, it is difficult to measure an abnormal response by damaging an existing bridge, numerical simulation can be an effective alternative. In most previous studies, which simulate the damage responses of a cable-stayed bridge, the damages has been considered as a load variation without regard to its stiffness variation. The analyses of using these simplification could not calculate exact responses of damaged structure, though it may reserve a sufficient accuracy for the purpose of bridge design. This study suggests Gradual Bilinear Method (GBM) which simulate the damage responses of cable-stayed bridge considering the stiffness and mass variation, and develops an analysis program. The developed program is verified from the responses of a simple model. The responses of a existing cable-stayed bridge model are analyzed with respect to the fracture delay time and damage ratio. The results of this study can be used to develop and verify the highly accurate abnormal behavior detection algorithm for safety management of architecture/large structures.

A Deterministic User Optimal Traffic Assignment Model with Route Perception Characteristics of Origins and Destinations for Advanced Traveler Information System (ATIS 체계 구축을 위한 출발지와 도착지의 경로 인지 특성 반영 확정적 사용자 최적통행배정 모형)

  • Shin, Seong-Il;Sohn, Kee-Min;Lee, Chang-Ju
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.1
    • /
    • pp.10-21
    • /
    • 2008
  • User travel behavior is based on the existence of complete traffic information in deterministic user optimal principle by Wardrop(1952). According to deterministic user optimal principle, users choose the optimal route from origin to destination and they change their routes arbitrarily in order to minimize travel cost. In this principle, users only consider travel time as a factor to take their routes. However, user behavior is not determined by only travel time in actuality. Namely, the models that reflect only travel time as a route choice factor could give irrational travel behavior results. Therefore, the model is necessary that considers various factors including travel time, transportation networks structure and traffic information. In this research, more realistic deterministic optimal traffic assignment model is proposed in the way of route recognizance behavior. This model assumes that when users decide their routes, they consider many factors such as travel time, road condition and traffic information. In addition, route recognizance attributes is reflected in this suggested model by forward searching method and backward searching method with numerical formulas and algorithms.

  • PDF

De-interlacing Algorithm based on Motion Compensation Reliability (움직임 보상의 신뢰도에 기반 한 순차주사화 알고리즘)

  • Chang, Joon-Young;Kim, Young-Duk;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.6
    • /
    • pp.102-111
    • /
    • 2009
  • In this paper, we propose a de-interlacing algorithm that combines a motion compensation (MC) method and the vertical-temporal filter with motion compensation (MC V-T filter) according to motion compensation reliability. The MC method represent one of the best ways of improving the resolution of de-interlaced frames, but it may introduce motion compensation artifacts in regions with incorrect motion information. In these regions, the MC V-T filter that is very robust to motion vector errors can be used to correct motion compensation artifacts. The combination between two methods is controlled by the motion compensation reliability that is measured by analyzing the estimated motion vectors and the results of MC. The motion compensation reliability contains information about motion compensation artifacts of MC results and determines the combination weight according to this information. Therefore, the combination rule of the proposed method is more accurate than those of the conventional methods and it enables the proposed method to provide high quality video sequences without producing any visible artifacts. Experimental results with various test sequences show that the proposed algorithm outperforms conventional algorithms in terms of both visual and numerical criteria.

An Adaptive Load Control Scheme in Hierarchical Mobile IPv6 Networks (계층적 모바일 IP 망에서의 적응형 부하 제어 기법)

  • Pack Sang heon;Kwon Tae kyoung;Choi Yang hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.10A
    • /
    • pp.1131-1138
    • /
    • 2004
  • In Hierarchical Mobile Ipv6 (HMIPv6) networks, the mobility anchor point (MAP) handles binding update (BU) procedures locally to reduce signaling overhead for mobility. However, as the number of mobile nodes (MNs) handled by the MAP increases, the MAP suffers from the overhead not only to handle signaling traffic but also to Process data tunneling traffic. Therefore, it is important to control the number of MNs serviced by the MAP, in order to mitigate the burden of the MAP. We propose an adaptive load control scheme, which consists of two sub-algorithms: threshold-based admission control algorithm and session-to-mobility ratio (SMR) based replacement algorithm. When the number of MNs at a MAP reaches to the full capacity, the MAP replaces an existing MN at the MAP, whose SMR is high, with an MN that just requests binding update. The replaced MN is redirected to its home agent. We analyze the proposed load control scheme using the .Markov chain model in terms of the new MN and the ongoing MN blocking probabilities. Numerical results indicate that the above probabilities are lowered significantly compared to the threshold-based admission control alone.

Periodic Mesh Generation for Composite Structures using Polyhedral Finite Elements (다면체 유한요소를 이용한 복합재 구조의 주기 격자망 생성)

  • Sohn, Dongwoo;Park, Jong Youn;Cho, Young-Sam;Lim, Jae Hyuk;Lee, Haengsoo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.239-245
    • /
    • 2014
  • Finite element modeling of composite structures may be cumbersome due to complex distributions of reinforcements. In this paper, an efficient scheme is proposed that can generate periodic meshes for the composite structures. Regular meshes with hexahedral finite elements are first prepared, and the elements are then trimmed to fit external surfaces of reinforcements in the composite structures. The trimmed hexahedral finite elements located at interfaces between the matrix and the reinforcements correspond to polyhedral finite elements, which allow an arbitrary number of nodes and faces in the elements. Because the trimming process is consistently conducted by means of consistent algorithms, the elements of the reinforcements are automatically compatible with those of the matrices. With the additional consideration of periodicity of reinforcements in a representative volume element(RVE), the proposed scheme provides periodic meshes in an efficient manner, which are compatible for each pair of periodic boundaries of the RVE. Therefore, periodic boundary conditions for the RVE are enforced straightforwardly. Numerical examples demonstrate the effectiveness of the proposed scheme for finite element modeling of complex composite structures.

Out-of-Plane Buckling Analysis of Curved Beams Considering Rotatory Inertia Using DQM (미분구적법(DQM)을 이용 회전관성을 고려한 곡선 보의 외평면 좌굴해석)

  • Kang, Ki-jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.10
    • /
    • pp.300-309
    • /
    • 2016
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort towards developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic curved beams has been the subject of many investigations. Solutions to the relevant differential equations have traditionally been obtained by the standard finite difference or finite element methods. However, these techniques require a great deal of computer time for a large number of discrete nodes with conditions of complex geometry and loading. One efficient procedure for the solution of partial differential equations is the differential quadrature method (DQM). This method has been applied to many cases to overcome the difficulties of complex algorithms and high storage requirements for complex geometry and loading conditions. Out-of-plane buckling of curved beams with rotatory inertia were analyzed using DQM under uniformly distributed radial loads. Critical loads were calculated for the member with various parameter ratios, boundary conditions, and opening angles. The results were compared with exact results from other methods for available cases. The DQM used only a limited number of grid points and shows very good agreement with the exact results (less than 0.3% error). New results according to diverse variation are also suggested, which show important roles in the buckling behavior of curved beams and can be used for comparisons with other numerical solutions or experimental test data.

Path-following Control for Autonomous Navigation of Marine Vessels Considering Disturbances (외력을 고려한 선박의 자율운항을 위한 경로추종 제어)

  • Lee, Sang-Do
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.5
    • /
    • pp.557-565
    • /
    • 2021
  • Path-following control is considered as one of the most fundamental skills to realize autonomous navigation of marine vessels in the ocean. This study addresses with the path-following control for a ship in which there are environmental disturbances in the directions of the surge, sway, and yaw motions. The guiding principle and back-stepping method was utilized to solve the ship's tracking problem on the reference path generated by a virtual ship. For path-following control, error dynamics is one of the most important skills, and it extends to the research fields of automatic collision avoidance and automatic berthing control. The algorithms for the guiding principles and error variables have been verified by numerical simulation. As a result, most error variables converged to zero values with the controller except for the yaw angle error. One of the most interesting results is that the tracking errors of path-following control between two ships are smaller than the existing safe passing distances considering interaction forces from near passing ships. Moreover, a trade-off between tracking performance and the ship's safety should be considered for determining the proper control parameters to prevent the destructive failure of actuators such as propellers, fins, and rudders during the path-following of marine vessels.

Free Vibration Analysis of Circular Arches Considering Effects of Midsurface Extension and Rotatory Inertia Using the Method of Differential Quadrature (미분구적법을 이용 중면신장 및 회전관성의 영향을 고려한 원형아치의 고유진동해석)

  • Kang, Ki-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.9-17
    • /
    • 2021
  • Curved beams are increasingly used in buildings, vehicles, ships, and aircraft, which has resulted in considerable effort being directed toward developing an accurate method for analyzing the dynamic behavior of such structures. The stability behavior of elastic circular arches has been the subject of a large number of investigations. One of the efficient procedures for the solution of ordinary differential equations or partial differential equations is the differential quadrature method DQM. This method has been applied to a large number of cases to overcome the difficulties of the complex computer algorithms, as well as excessive use of storage due to conditions of non-linear geometries, loadings, or material properties. This study uses DQM to analyze the in-plane vibration of the circular arches considering the effects of midsurface extension and rotatory inertia. Fundamental frequency parameters are calculated for the member with various parameter ratios, boundary conditions, and opening angles. The solutions from DQM are compared with exact solutions or other numerical solutions for cases in which they are available and given to analyze the effects of midsurface extension and rotatory inertia on the frequency parameters of the circular arches.