• Title/Summary/Keyword: numerical Model

Search Result 15,989, Processing Time 0.038 seconds

Probabilistic Medium- and Long-Term Reservoir Inflow Forecasts (II) Use of GDAPS for Ensemble Reservoir Inflow Forecasts (확률론적 중장기 댐 유입량 예측 (II) 앙상블 댐 유입량 예측을 위한 GDAPS 활용)

  • Kim, Jin-Hoon;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.3 s.164
    • /
    • pp.275-288
    • /
    • 2006
  • This study develops ESP (Ensemble Streamflow Prediction) system by using medium-term numerical weather prediction model which is GDAPS(T213) of KMA. The developed system forecasts medium- and long-range exceedance Probability for streamflow and RPSS evaluation scheme is used to analyze the accuracy of probability forecasts. It can be seen that the daily probability forecast results contain high uncertainties. A sensitivity analysis with respect to forecast time resolution shows that uncertainties decrease and accuracy generally improves as the forecast time step increase. Weekly ESP results by using the GDAPS output with a lead time of up to 28 days are more accurately predicted than traditional ESP results because conditional probabilities are stably distributed and uncertainties can be reduced. Therefore, it can be concluded that the developed system will be useful tool for medium- and long-term reservoir inflow forecasts in order to manage water resources.

A Numerical Study on Heat Transfer and Flow Characteristics of a Finned Downhole Coaxial Heat Exchanger (외부유로 내벽에 설치된 핀 형상에 따른 이중관 열교환기의 열전달 및 유동에 대한 수치해석적 연구)

  • Park, Chun Dong;Lee, Dong Hyun;Park, Byung-Sik;Choi, Jaejoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.2
    • /
    • pp.79-86
    • /
    • 2017
  • In this study, the flow and heat transfer characteristics of the finned annular passage were investigated numerically. The annular passage simulates co-axial geothermal heat exchanger, and fins are installed on its inner wall to reduce heat loss from the production passage (annulus) to injection passage (inner pipe). A commercial CFD program, Ansys Fluent, was used with SST $k-{\omega}$ turbulence model. The effects of the geometric parameters of the fin on the inner tube were analyzed under the periodic boundary condition. The result indicated that most parameters had a tendency to increase with an increase in the height and angle of the fin. However, it was confirmed that the Nusselt number of the inner tube on the coaxial 15, 5, 0.3 was lower than that of the smooth tube. Additionally, the Nusselt number of the inner tube exhibited a tendency of decreasing with a decrease in the spacing in Coaxial 15, $S_f$, 0.3.

A Technical Guide to Operational Regional Ocean Forecasting Systems in the Korea Hydrographic and Oceanographic Agency (I): Continuous Operation Strategy, Downloading External Data, and Error Notification (국립해양조사원 해양예측시스템 소개 (I): 현업 운영 전략, 외부 해양·기상 자료 내려 받기 및 오류 알림 기능)

  • BYUN, DO-SEONG;SEO, GWANG-HO;PARK, SE-YOUNG;JEONG, KWANG-YEONG;LEE, JOO YOUNG;CHOI, WON-JIN;SHIN, JAE-AM;CHOI, BYOUNG-JU
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.103-117
    • /
    • 2017
  • This note provides technical guide on three issues associated with establishing and automatically running regional ocean forecasting systems: (1) a strategy for continuous production of hourly-interval three-day ocean forecast data, (2) the daily download of ocean and atmospheric forecasting data (i.e., HYCOM and NOAA/NCEP GFS data), which are provided by outside institutions and used as initial condition, surface forcing, and boundary data for regional ocean models, and (3) error notifications to numerical model managers through the Short Message Service (SMS). Guidance on dealing with these three issues is illustrated via solutions implemented by the Korea Hydrographic and Oceanographic Agency, since in embarking on this project we found that this procedural information was not readily available elsewhere. This technical guide is based on our experiences and lessons learned during the process of establishing and operating regional ocean forecasting systems for the East Sea and the Yellow and East China Seas over the 5 year period of 2012-2016. The fundamental approach and techniques outlined in this guide are of use to anyone wanting to establish an automatic regional and coastal ocean forecasting system.

Quantitative Analysis of Feline Calicivirus Inactivation using Real-time RT-PCR (Real-time RT-PCR을 이용한 Feline Calicivirus 불활성화의 정량적 분석)

  • Jeong, Hye Mi;Kim, Kwang Yup
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • Norovirus causes acute gastroenteritis in all age groups and its food poisoning outbreaks are rapidly increasing in Korea. Reverse transcription-polymerase chain reaction (RT-PCR) is most widely used for the rapid detection of foodborne viruses due to high sensitivity. However, the false positive results of RT-PCR obtained against already inactivated viruses could be a serious drawbacks in food safety area. In this study, we investigated a method to yield true positive RT-PCR results only with alive viruses. To decompose the RNA genes from dead viruses, the enzymatic treatments composed of proteinse K and Ribonuclease A were applied to the sanitized and inactivated virus particles. Another aim of this study was to quantify the efficiencies of several major sanitizing treatments using real-time RT-PCR. Feline calicivirus (FCV) that belongs to the same Caliciviridae family with norovirus was used as a surrogate model for norovirus. The initial level of virus in control suspension was approximately $10^4$ PFU/mL. Most of inactivated viruses treated with the enzymatic treatment for 30 min at $37^{\circ}C$ were not detected in RT-PCR, Quantification results to verify the inactivation efficiencies of sanitizing treatments using real-time RT-PCR showed no false positive in most cases. We could successfully develope a numerical quantification process for the inactivated viruses after major sanitizing treatments using real-time RT-PCR. The results obtained in this study could provide a novel basis of rapid virus quantification in food safety area.

Influence of Wall Motion and Impedance Phase Angle on the Wall Shear Stress in an Elastic Blood Vessel Under Oscillatory Flow Conditions (맥동유동하에 있는 탄성혈관에서 벽면운동과 임피던스 페이즈앵글이 벽면전단응력에 미치는 영향)

  • 최주환;이종선;김찬중
    • Journal of Biomedical Engineering Research
    • /
    • v.21 no.4
    • /
    • pp.363-372
    • /
    • 2000
  • The present study investigated flow dynamics of a straight elastic blood vessel under sinusoidal flow conditions in order to understand influence of wall motion and impedance phase angle(time delay between pressure and flow waveforms) on wall shear stress distribution using computational fluid dynamics. For the straight elastic tube model considered in the our method of computation. The results showed that wall motion induced additional terms in the axial velocity profile and the pressure gradient. These additional terms due to wall motion reduced the amplitude of wall shear stress and also changed the mean wall shear stress. Te trend of the changes was very different depending on the impedance phase angle. As the wall shear stress increased. As the phase angle was reduced from 0$^{\circ}$to -90$^{\circ}$for ${\pm}$4% wall motion case, the mean wall shear stress decreased by 10.5% and the amplitude of wasll shear stress increased by 17.5%. Therefore, for hypertensive patients vulnerable state to atherosclerosis according to low and oscillatory shear stress theory.

  • PDF

A Study on Numerical Calculations of Hybrid Air Pollution Control System Coupled with SDR and Bag Filter (반건식 반응기와 백필터를 결합한 하이브리드 대기오염제어 시스템의 수치해석적 연구(I))

  • Kwon, Young-Hyun;Kim, Jin-Uk;Jung, Yu-Jin;Kim, Min-Choul;Lee, Jae-Jeong;Lee, Gang-Woo;Shon, Byung-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.11
    • /
    • pp.4656-4663
    • /
    • 2010
  • In this study, the 3D computational fluid dynamics (CFD) was performed in relation to the internal fluid characteristics, flow distribution, air mean ages, and residence time for the development of the most optimal model in the complex post-disposal device. As it is expected that a channeling (drift) would be made by the semi-dry reactor due to the large difference in the flow distribution by the compartment in the bag filter, a structural improvement should be urgently made for more uniformed flow distribution in the bag filter. In addition, it showed the possibility that the velocity field and distribution characteristics of the residence time could be improved through a modification to inlet structure of the spray dryer reactor. The complex post-disposal device, modified and supplemented with this analysis, integrated the semi-dry reactor and the bag filter in a single body, so it follows that the improvement can make the device compact, the installation area, the operation fee, and management more convenient.

Modeling and analysis of dynamic heat transfer in the cable penetration fire stop system by using a new hybrid algorithm (새로운 혼합알고리즘을 이용한 CPFS 내에서의 일어나는 동적 열전달의 수식화 및 해석)

  • Yoon En Sup;Yun Jongpil;Kwon Seong-Pil
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.44-52
    • /
    • 2003
  • In this work dynamic heat transfer in a CPFS (cable penetration fire stop) system built in the firewall of nuclear power plants is three-dimensionally investigated to develop a test-simulator that can be used to verify effectiveness of the sealant. Dynamic heat transfer in the fire stop system is formulated in a parabolic PDE (partial differential equation) subjected to a set of initial and boundary conditions. First, the PDE model is divided into two parts; one corresponding to heat transfer in the axial direction and the other corresponding to heat transfer on the vertical planes. The first PDE is converted to a series of ODEs (ordinary differential equations) at finite discrete axial points for applying the numerical method of SOR (successive over-relaxation) to the problem. The ODEs are solved by using an ODE solver In such manner, the axial heat flux can be calculated at least at the finite discrete points. After that, all the planes are separated into finite elements, where the time and spatial functions are assumed to be of orthogonal collocation state at each element. The initial condition of each finite element can be obtained from the above solution. The heat fluxes on the vertical planes are calculated by the Galerkin FEM (finite element method). The CPFS system was modeled, simulated, and analyzed here. The simulation results were illustrated in three-dimensional graphics. Through simulation, it was shown clearly that the temperature distribution was influenced very much by the number, position, and temperature of the cable stream, and that dynamic heat transfer through the cable stream was one of the most dominant factors, and that the feature of heat conduction could be understood as an unsteady-state process.

  • PDF

Statistical Analysis of Receding Horizon Particle Swarm Optimization for Multi-Robot Formation Control (다개체 로봇 편대 제어를 위한 이동 구간 입자 군집 최적화 알고리즘의 통계적 성능 분석)

  • Lee, Seung-Mok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.5
    • /
    • pp.115-120
    • /
    • 2019
  • In this paper, we present the results of the performance statistical analysis of the multi-robot formation control based on receding horizon particle swarm optimization (RHPSO). The formation control problem of multi-robot system can be defined as a constrained nonlinear optimization problem when considering collision avoidance between robots. In general, the constrained nonlinear optimization problem has a problem that it takes a long time to find the optimal solution. The RHPSO algorithm was proposed to quickly find a suboptimal solution to the optimization problem of multi-robot formation control. The computational complexity of the RHPSO increases as the number of candidate solutions and generations increases. Therefore, it is important to find a suboptimal solution that can be used for real-time control with minimal candidate solutions and generations. In this paper, we compared the formation error according to the number of candidate solutions and the number of generations. Through numerical simulations under various conditions, the results are analyzed statistically and the minimum number of candidate solutions and the minimum number of generations of the RHPSO algorithm are derived within the allowable control error.

Damage Evaluation of Track Components for Sleeper Floating Track System in Urban Transit (도시철도 침목플로팅궤도 궤도구성품의 손상평가)

  • Choi, Jung-Youl;Kim, Hak-Seon;Han, Kyung-Sung;Jang, Cheol-Ju;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.4
    • /
    • pp.387-394
    • /
    • 2019
  • In this study, in order to evaluate the damage and deterioration of the track components of sleeper floating track (STEDEF), the field samples(specimens) were taken from the serviced line over 20 years old, and the track components were visually inspected, and investigated by laboratory tests and finite element analysis. As a result of visual inspection, the damage of the rail pad and fastener was slight, but the rubber boot was worn and torn at the edges of bottom. The resilience pads were clearly examined for thickness reduction and fatigue hardening layer. As a result of spring stiffness test of rail pad and resilience pad, the deterioration of rail pad was insignificant, but the deterioration of resilience pad exceeded design standard value. Therefore resilience pad was directly affected by train passing tonnage. As a result of comparing the deterioration state of the field sample and the numerical analysis result, the stress and displacement concentration position of the finite element model and the damage position of the field sample were coincident.

A Study on Hull-Form Design for Ships Operated at Two Speeds (두 가지 속도에서 운항하는 선박의 형상설계에 관한 연구)

  • Kim, Tae Hoon;Choi, Hee Jong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.4
    • /
    • pp.467-474
    • /
    • 2018
  • The purpose of this study is related to automatic hull-form design for ships operating at two speeds. Research was conducted using a series 60 ($C_B=0.6$) ship as a target, which has the most basic ship hull-form. Hull-form development was pursued from the viewpoint of improving resistance performance. In particular, automatic hull-form design for a ship was performed to improve wave resistance, which is closely related to hull-forms. For this purpose, we developed automatic hull-form design software for ships by combining an optimization technique, resistance prediction technique and hull-form modification technique, appling the software developed to a target ship. A sequential quadratic programming method was used for optimization, and a potential-based panel method was used to predict resistance performance. A Gaussian-type modification function was developed and applied to change the ship hull-form. The software developed was used to design a target ship operating at two different speeds, and the performance of the resulting optimized hull was compared with the results of the original hull. In order to verify the validity of the program developed, experimental results obtained in model tests were compared with calculated values by numerical analysis.